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Distributed Backup Placement in One Round and its Applications

to Maximum Matching Approximation and Self-Stabilization

Leonid Barenboim ∗ , Gal Oren †

Abstract

In the distributed backup-placement problem [8] each node of a network has to select one neighbor,
such that the maximum number of nodes that make the same selection is minimized. This is a natural
relaxation of the perfect matching problem, in which each node is selected just by one neighbor. Pre-
vious (approximate) solutions for backup placement are non-trivial, even for simple graph topologies,
such as dense graphs [5]. In this paper we devise an algorithm for dense graph topologies, including
unit disk graphs, unit ball graphs, line graphs, graphs with bounded diversity, and many more. Our
algorithm requires just one round, and is as simple as the following operation. Consider a circular list
of neighborhood IDs, sorted in an ascending order, and select the ID that is next to the selecting vertex
ID. Surprisingly, such a simple one-round strategy turns out to be very efficient for backup placement
computation in dense networks. Not only that it improves the number of rounds of the solution, but
also the approximation ratio is improved by a multiplicative factor of at least 2.

Our new algorithm has several interesting implications. In particular, it gives rise to a (2 + ǫ)-
approximation to maximum matching within O(log∗ n) rounds in dense networks. The resulting al-
gorithm is very simple as well, in sharp contrast to previous algorithms that compute such a solution
within this running time. Moreover, these algorithms are applicable to a narrower graph family than
our algorithm. For the same graph family, the best previously-known result has O(log∆ + log∗ n)
running time [4]. Another interesting implication is the possibility to execute our backup placement
algorithm as-is in the self-stabilizing setting. This makes it possible to simplify and improve other
algorithms for the self-stabilizing setting, by employing helpful properties of backup placement.

1 Introduction

Background: The perfect matching problem in a graph G = (V,E) aims to find a subset of edges
E′ ⊆ E, such that the edges of E′ are non-adjacent, and each vertex of V belongs to exactly one edge
of E′. Unfortunately, not every graph admits a perfect matching. In this paper we consider a natural
relaxation of perfect matchings. Specifically, each vertex must select a neighbor, such that the maximum
number of vertices that select the same vertex in the graph is minimized. In other words, the goal is
finding a subset of edges E′ ⊆ E, such that each vertex of v belongs to at least on edge of E′, and
the maximum degree in G′ = (V,E′) is minimized. In addition, the edges of E′ are oriented, and each
vertex in G′ has out degree of one. This corresponds to the requirement that each vertex selects just
one neighbor, but can be selected by several neighbors. Note that if E′ is a maximum matching, the
maximum degree in G′ is 1. When finding a maximum matching is not possible, the goal is minimizing
the maximum degree of G′, while making sure that all vertices belong to edges of E′.

In the distributed setting, this problem is called Backup Placement. It was introduced by Halldorsson,
Kohler, Patt-Shamir, and Rawitz [8]. It is very well motivated by computer networks whose nodes may
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have memory faults, and wish to store backup copies of their data at neighboring nodes [11]. But
neighboring nodes may incur faults as well, and so the number of nodes that select the same backup-node
should be minimized. This way, if a backup node incurs faults, the number of nodes in the network that
lose data is minimized.

The precise definition of the distributed variant of the problem is as follows. The computer network
is represented by an unweighted unoriented graph G = (V,E), where V is the set of nodes, and E is
the set of communication links. Communication proceeds in synchronous discrete rounds. In each round
vertices receive and send message, and perform local computations. A message sent over an edge in a
certain round arrives to the endpoint of that edge by the end of the round. The algorithm terminates once
every vertex outputs its neighbor selection for the backup placement. The running time is the number of
rounds from the beginning until all vertices make their decisions. We consider two variants of networks:
faultless networks and faulty networks. For the latter, the goal is obtaining a self-stabilizing algorithm.
In Sections 2 - 3 we consider faultless networks. In Section 4 we consider faulty networks, and elaborate
there on the additional properties of the problem and the required solution in this case.

The backup placement problem turned out to be quite challenging in general graphs. The best-

currently known solution is a randomized algorithm with running time O( log6 n

log4 logn
) that obtains an ap-

proximation factor of O( logn
log logn

). This solution due to Halldorsen et al. [8] is non-trivial at all, and
involves distributed computations of a certain variant of matching, called an f -matching, in bipartite
graphs. On the other hand, in certain network topologies, simpler and much more efficient solutions
are known. In particular, this is the case in wireless networks, certain social networks, claw-free graphs,
line graphs, and more generally, any graph with neighborhood-independence bounded by a constant c.
Neighborhood independence I(G) of a graph G = (V,E) is the maximum size of an independent set con-
tained in a neighborhood Γ(v), v ∈ V . For graphs with I(G) ≤ c = O(1), a constant-time deterministic
distributed algorithm with approximation ratio 2c + 1 = O(1) was devised by Barenboim and Oren [5].
Although not so complicated, this algorithm still consists of several stages, including a computation of a
tree cover, and then handling differently the different parts of the trees. (Such as leafs and non-leafs.)

Our Results: In the current paper we significantly simplify the backup placement algorithm for
graphs with neighborhood independence bounded by a constant c. Specifically, the algorithm becomes
uniform, and consists just of a single instruction that should be executed by all nodes in parallel within
a single round. Consequently, the running time becomes just one round, which improves the number of
rounds required in the previous solution for such graphs by a constant. More importantly, this improves
the approximation ratio as well, which becomes c, rather than 2c+1 of [5]. Furthermore, this instruction
is solely a function of the IDs of a vertex and its neighbors. As IDs are stored in areas that are considered
to be failure-free (in contrast to variables that are stored in Random Access Memory that is failure-
pron), algorithms that perform computations only as a function of IDs within a single round can be
translated into self-stabilizing ones in a straightforward way. The structure of our algorithm makes it
especially suitable for implementation in real-life networks with limited resources, such as sensor networks,
heterogeneous networks, and Internet of Things.

We employ our backup-placement algorithm in order to compute maximum matching approximation
of an input graph G with neighborhood independence bounded by c. For c = O(1), we obtain a (2 +
ǫ)-approximation to maximum matching within O(log∗ n) rounds. The best previously-known O(1)-
approximation for such graph has running time O(log∆ + log∗ n) [4], where ∆ is the maximum degree
of the graph. Another O(1)-approximate matching result, for a narrower family of graphs with bounded
growth, has running time O(log∗ n) [13]. However, this result of Schneider and Wattenhofer [13] is based
on network decompositions, whose computation in such graphs involves very sophisticated arguments.
Our algorithm, on the other hand, applies to a wider family of graphs, and is very simple. Specifically,
it performs a constant number of iterations, each of which consists of computing a backup-placement



G′ = (V,E′), computing a maximal matching of it, and removing the matched edges and edges adjacent
on them from G. Since the maximum degree of G′ = (V,E′) is c + 1 = O(1), computing a maximal
matching in it requires just O(log∗ n) rounds, using [12].

Graphs with bounded independence: The family of graphs with neighborhood independence
bounded by a constant is a very wide family that captures various network types. This includes unit disk
graphs, unit balls graphs, line graphs, line graphs of hypergraphs, claw-free graphs, graphs of bounded
diversity, and many more. Consequently, this graph family and its subtypes have been very widely
studied, especially in the distributed computing setting [7, 14, 2, 3, 4, 1, 9]. For example, unit disc graphs
can model certain types of wireless networks. In such networks all nodes have the same transmission
range that is the radius of a disc. If nodes are positioned in the plane, the neighbors of any node can
be covered by at most 6 discs of radius 1/2. Each such disc forms a clique, since all nodes inside it
can transmit one to another. Thus a disc of radius 1/2 cannot contain two or more independent nodes.
Hence, the neighborhood independence of unit disc graphs is at most 6. Another notable example is the
family of line graphs. In these graphs each vertex belongs to at most 2 cliques, and thus the neighborhood
independence is bounded by 2.

A notable example of the benefit of analyzing such graphs is the very recent breakthrough of Kuhn [9].
Kuhn obtained a (2∆−1)-edge-coloring of general graphs by analyzing graphs with constant neighborhood
independence. The resulting algorithm provides a vertex coloring of such graph with time below the
square-root-in-∆ barrier. Since this provides, in particular, a vertex coloring of line graphs, it results in
an edge coloring of general graphs. This result, as well as other results for this topology, illustrate how
beneficial can be the analysis of graphs with bounded neighborhood independence.

2 Distributed Backup Placement Algorithm

We begin with devising a procedure for computing O(1)-backup placement in graphs with bounded
neighborhood independence c. We assume that each vertex knows only about its neighbors, and each
vertex has a unique ID. The procedure receives a graph G = (V,E) as input, and proceeds as follows.
We define an operation next-modulo that receives a vertex v and a set of its neighbors Γ(v) in the graph
G. The operation next-modulo(v, Γ(v)), selects a vertex in Γ(v) with a higher ID than the ID of v, and
whose ID is the closets to that of v. If no such neighbor is found, then the operation returns the neighbor
with the smallest ID. Formally, each vertex v ∈ V selects a neighbor w of v in G with the property that
ID(w) > ID(v), and there is no other neighbor z of v such that ID(w) > ID(z) > ID(v). If there is no
such neighbor, then v selects the minimum ID vertex in Γ(v). All these selections are performed in parallel
within a single round. This completes the description of the algorithm. Its pseudocode is provided in
Algorithm 1. Its action is illustrated in Figure 2. The next theorem summarizes its correctness.

Algorithm 1 Backup Placement in Graphs

1: procedure Graph-BP(Graph G = (V,E))
2: foreach node v ∈ G in parallel do:
3: v.BP = next-modulo(v, Γ(v))
4: /* find the vertex next to v in Γ(v), according to a circular list of sorted IDs of Γ(v) ∪ v */
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Figure 1: A backup placement (blue) in a graph with bounded neighborhood independence c = 4.

Theorem 2.1. Let G be a graph with neighborhood independence of c, i.e., for each vertex in the graph
with c+1 neighbors, at least two neighbors are connected by an edge. Then each vertex is selected by at
most c neighbors.

Proof. Assume for contradiction that c+1 vertices chose the same vertex u as a backup placement. Since
the neighborhood independence is c, at least two vertices, v1, v2, of the c + 1 vertices, are connected by
an edge. Therefore, a triangle {u, v1, v2} is formed in the subgraph induced by the edges selected by the
algorithm. However, we next show that u could not have been selected by both its neighbors v1, v2 in the
triangle: According to Algorithm 1, there are only three possibilities regarding ID order:
(1) ID(u) < ID(v1) and ID(u) < ID(v2),
(2) ID(v1) < ID(u) and ID(v2) < ID(u),
(3) ID(v1) < ID(u) < ID(v2) or ID(v2) < ID(u) < ID(v1).

However, in each of those possibilities, as presented in the three figures below, it is impossible for
two vertices to choose the same vertex for backup placement. This is because there is always a vertex
between v1 and u or between v2 and u, that one of u1, u2 must select. Indeed, either u1 is closer to u2
than to v, with respect to next-modulo operation, or u2 is closer to u1. More precisely:

• Case (1),(2): if ID(v1) < ID(v2) then v1 selects v2 or another neighbor with ID smaller than that
of v2, but not u. Otherwise v2 selects v1, or a neighbor with a smaller ID than that of v1, but not
u. In any case, both cannot select u simultaneously.

• Case (3): The vertex with the highest ID among the three is either v1 or v2. It must select a
neighbor with an even greater ID or the minimum ID. But u has an ID smaller than that of v1 or
v2, and is not the minimal among u, v1, v2. Thus, either v1 or v2 does not select v.

In any case, we have a contradiction to the assumption that both v1,v2 select u.
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Figure 2: *
2 = ID(v1) > ID(u) = 1
3 = ID(v2) > ID(u) = 1
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Figure 3: *
1 = ID(v1) < ID(u) = 3
2 = ID(v2) < ID(u) = 3
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Figure 4: *
ID(v1) < ID(u) < ID(v2)

1 < 2 < 3



3 Maximum Matching Approximation based on Backup Placement
A set of edges M ∈ E is called a Matching if and only if every vertex v ∈ V belongs to at most one edge
in M . A Maximal Matching (shortly, MM ) is a matching that is maximal with respect to addition of
edges, i.e., there is no edge e ∈ E such that M ∪{e} is a valid matching. A Maximum Matching (shortly,
MCM ) is a matching of maximum size among all matchings of E.

As shown in the previous section, given a graph G = (V,E) with bounded neighborhood independence
c, we can compute a O(1)-backup placement in a single round. This results in a subgraph, G′ = (V,E′),
where E′ is the set of all the selected edges of the backup placement algorithm. Each vertex in the
subgraph G′ has selected one neighbor, and is selected by at most c neighbors. All edges adjacent on a
vertex in G′ are either selecting edges or selected edges. Thus, the number of such edges is at most c+1.
Consequently, the maximum degree ∆(G′) is at most c+ 1.

1 2 . . . c

1 2 3 . . . c

Figure 5: The maximum degree ∆(G′) of the subgraph G′ = (V,E′) is at most c + 1. In red: a vertex
with degree of c+1, as it was selected by its neighbors with neighborhood independence of c, and selected
one additional neighbor.

We devise a Maximum Matching approximation based on this backup placement subgraph in O(log∗ n)
rounds. To this end, we compute a backup placement of an input graph G, obtain the graph G′ = (V,E′),
where E′ is the set of selected edges, and execute a maximal matching algorithm of Panconesi and Rizzi
[12] on G′. The latter algorithm computes a maximal matching of an input graph with degree ∆ within
O(∆ + log∗ n) rounds.

Lemma 3.1. Given a graph G = (V,E) with bounded neighborhood independence c, we achieve (c+ 1)-
approximation of the Maximum Matching problem.

Proof. We begin with executing the backup placement algorithm, which computes the sub-graph G′ =
(V,E′). Next, we compute an MM of G′. Since G′ has bounded neighborhood independence c and
∆(G′) = c+1, we can show that a maximal matching of G′ has size at least 1/(c+1) of MCM(G). This
is because every vertex in V is either in MM(G′) or adjacent (in G′) to a vertex in MM(G′). (Otherwise,
it is adjacent to a free vertex, and an edge can be added to the maximal matching of G′. Contradiction.)
Thus, the set of vertices that belong to edges of MM(G′) together with the vertices adjacent on them in
G′, are exactly the set V . On the other hand, since each vertex of MM(G′) is adjacent in G′ to at most
c + 1 vertices, the size of V is at most c + 1 times the number of vertices of MM(G′). Since the size of
the maximum matching is at most |V |/2 and the size of MM(G′) is at least |V |/2(c+ 1), we obtained a
(c+ 1)-approximation to maximum matching

Lemma 3.2. Given a graph G = (V,E) with bounded neighborhood independence c, the running time of
the Maximum Matching approximation is O(log∗ n).

Proof. Using O(∆ + log∗ n)-time Maximal Matching algorithm by Panconesi and Rizzi [12], and due to
the fact that ∆(G′) = c+ 1 = O(1), the achieved time complexity is O(log∗ n).



In order to reach an even better Maximum Matching approximation than the (c+ 1)-approximation,
we apply several times the maximal matching algorithm by Panconesi and Rizzi [12] on G′ which was
obtained by the O(1)-backup placement in graphs with bounded neighborhood independence c. In order
to preserve a proper matching of G in each step, after each computation of a maximal matching, we
remove the resulting edges endpoints from G′, as well as all edges adjacent on these endpoints. Then
we invoke again a maximal matching computation on the residual graph. We repeat this for a constant
number of iterations. This completes the description of the algorithm. Its pseudocode is provided in
Algorithm 2 below. Next, we prove its correctness and analyze running time.

Algorithm 2 Maximum Matching Approximation Algorithm

1: procedure Maximum-Matching-Approximation(Graph G = (V,E))
2: Let k be a positive constant
3: G′ = GeneralBP (G)
4: MCMA = ∅
5: for i = 1, 2, ..., k do

6: MCMA = MCMA ∪MM(G′)
7: G = G \ MM(G′) /* remove from G the edges of MM(G′), the adjacent edges in G of

MM(G′), and all isolated vertices. */
8: G′ = GeneralBP (G)

9: return MCMA

Theorem 3.3. Given a graph G = (V,E) with bounded neighborhood independence c, we achieve a
(2 + ǫ)-approximation of the Maximum Matching problem.

Proof. Be Lemma 3.1, after the first iteration of the loop of line 5 of Algorithm 2, we obtain a (c + 1)-
approximation to maximum matching. Moreover, since each edge in the matching is adjacent in G′ to
at most 2c vertices, and the set of vertices of the matching with their neighbors is V , the size of the
matching is at least |V |/2(c + 1) = n/2(c + 1). In each iteration of the loop, at least 1/(c + 1)-fraction
of the vertices that are still in G are matched and removed from G. Hence, for i = 1, 2, ..., the number
of vertices remaining in G is at most (c/c + 1)i · n. All the other vertices are either matched or have all
their neighbors matched. For an arbitrarily small fixed constant ǫ and a sufficiently large constant i, it
holds that (c/c + 1)i · n ≤ ǫ · n/2(c + 1). In other words, the residual set of vertices after i rounds is of
size at most an ǫ fraction of the matching already computed in iteration 1. Thus, after i iteration, any
subset of remaining edges of G whose addition makes the result a maximal matching, increases its size
by at most an ǫ fraction. Therefore, the matching after i iterations is a (1 + ǫ)-approximation to MM.
Since MM is a 2-approximation to MCM, our algorithm computes a (2 + ǫ)-approximate MCM within a
constant number of iterations.

Theorem 3.4. Given a graph G = (V,E) with bounded neighborhood independence c, the running time
of Algorithm 2 is O(log∗ n).

Proof. Using O(∆ + log∗ n)-time Maximal Matching algorithm by Panconesi and Rizzi [12], and due to
the fact that ∆(G′) = c + 1 = O(1), each iteration requires O(log∗ n) rounds. Since the overall number
of iterations is constant, the entire running time is O(log∗ n) as well.

4 Self-stabilizing Backup Placement in Graphs of Bounded Neighbor-

hood Independence
In this section we devise a self-stabilizing backup placement algorithm in Dijkstra model of self-stabilization
[6]. In this model each vertex has a ROM (Read Only Memory) that is failure free, and a RAM (Random



Access Memory) that is prone to failures. An adversary can corrupt the RAM of all processors in any
way. However, in certain periods of time, faults do not occur. These periods of time are not known to the
processors. The goal of a distributed self-stabilizing algorithm is reaching a proper state in all processors,
once faults stop occurring. Since these time points are not known in advance, an algorithm is constantly
executed by all processors. The stabilization time is the number of rounds from the beginning of a time
period in which faults do not occur, until all processors reach a proper state, given that no additional
faults occur during this time period.

Our algorithm stores only the ID of a processor in its ROM. The backup placement selection is stored
in the RAM of a processor. The self-stabilizing algorithm is extremely simple. Specifically, In each round
each vertex executes the next-modulo operation. In other words, each vertex repeats Algorithm 1 in each
round. This completes the description of the algorithm. Since this operation within a single (faultless)
round results in a proper O(1)-Backup-placement in a graph with constant neighborhood independence,
such an algorithm stabilizes within one round after faults stop occurring. Moreover the solution remains
proper as long as there are no faults. We summarize this in the next theorem.

Theorem 4.1. In graphs with neighborhood independence bounded by a constant, our algorithm stabilizes
within 1 round and produces O(1)-backup-placement.

Thanks to the simplicity of this backup-placement algorithm, it can be used as a building block
for other self-stabilization algorithms that employ backup-placements. Specifically, in each round an
algorithm can execute the next-modulo operation before its own code. This way, starting from the round
after the round when faults stop occurring, a subgraph G′ of maximum degree c + 1 is obtained. This
subgraph does not change as long as there are no additional faults. This is because the subgraph is deduced
once faults stopped occurring, based only on values in the ROM, and this subgraph does not change in
faultless rounds. Thus, a self-stabilizing algorithm with time of the form f(∆, n) = f1(∆) · f2(n) invoked
on G′ will stabilize within f(∆′, n) + 1 = O(f2(n)) rounds. This is because ∆′ = ∆(G′) = c+ 1 = O(1)
in graphs with bounded neighborhood independence c. Hence, we obtain the following theorem.

Theorem 4.2. In graph with neighborhood independence at most c = O(1), any self-stabilizing maximal
matching algorithm with time f(∆, n) = f1(∆) · f2(n) can be converted to a self-stabilizing (c + 1)-
approximation of maximum matching with time O(f1(c) · f2(n)) = O(f2(n)).

For example, a maximal matching algorithm with running time O(∆n + ∆2 log n), such as the self-
stabilizing algorithm of [10] adapted to a network with IDs, can be converted into a self-stabilizing
(c+ 1)-approximate MCM algorithm with O(c · n+ c2 log n) time. This is O(n), for c = O(1).
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