
The Looking-Glass System: A Unidirectional
Network for Secure Data Transfer Using

an Optic Medium

Gal Oren1,2(&), Lior Amar3, David Levy-Hevroni2,
and Guy Malamud2

1 Department of Computer Science,
Ben-Gurion University of the Negev, P.O.B. 653, Beersheba, Israel

orenw@post.bgu.ac.il
2 Department of Physics, Nuclear Research Center-Negev,

P.O.B. 9001, Beersheba, Israel
dlhevroni@gmail.com, guy.malamud@gmail.com

3 Parallel Machines - Information Technology and Services Ltd.,
Tel-Aviv, Israel

liororama@gmail.com

Abstract. The Looking-Glass system is a unidirectional network for data
transfer using an optic medium, base on the principle of transferring information
digitally between two stations without an electric connection. The implemen-
tation of this idea includes one side encoding and projecting the information to a
screen in high speed, and a receiving side, which decodes the information image
back to its original form. The decoding is done using a unique algorithm. Also,
in order to synchronize between the transmitter and the receiver sides a separate
synchronization system base on video pattern recognition is used. This tech-
nique can be useful whenever there is a need to transfer information from a
closed network – especially sensitive one – to an open network, such as the
Internet network, while keeping the information in its original form, and without
any fear of an uncontrolled bidirectional flow of information – either by a
leakage or a cyber attack.

Keywords: Confidential networks � Information security � Unidirectional
systems � Encrypted data transmission

1 Introduction

“Oh, what fun it’ll be, when they see me through the glass in here, and can’t get at me!”

Lewis Carroll, Through the Looking-Glass (1871)

There are two major risks in the process of data transference from a secure con-
fidential network into an open network [1]. The first risk is based on the reasonable
assumption that there are possible threats which would like to break the networks’
security fence in order to steal confidential information (in the best-case scenario), or to
inject a malware in order to harm the network (in the worst-case). In the latter, one can

© Springer International Publishing AG 2016
R. Doss et al. (Eds.): FNSS 2016, CCIS 670, pp. 81–97, 2016.
DOI: 10.1007/978-3-319-48021-3_6

assume that a leak of secure information is possible due to metadata which was
embedded into the transmitted data without the knowledge of the transmitter.

In many cases, the way those risks are handled is by an act of avoidance from any
digital transmission of data from a secure network to an open network, when the
alternative is by exporting a physical copy of the file by printing it on a plain paper. If it
is necessary to get a digital copy of the data, the printed paper is scanned as an image,
and by a usage of the Optical Character Recognition (OCR) technique it is been
transformed back to a digital form in the open network [1]. This kind of solution holds
many technical and immanent problems, which make the whole process ineffective at
the best-case scenario because of its mechanical fashion, or even unreliable in the worst
case because of the OCR algorithm inherent imperfect capabilities.

The Looking-Glass system supplies a technological solution to the current mode of
work while supplying a secure solution to the two major risks of digital data transfer
discussed above. The implementation of the idea includes a high speed transmitting
side (i.e. transmitter), encoding and projecting the information to a screen, and a
receiving side (i.e. receiver), which receive the information by remotely filming the
screen and decoding the image information back to its original form, using unique
image-processing algorithm. In order to synchronize between the transmitter and the
receiver, we built a separate synchronization system based on video pattern recogni-
tion. Figure 1 shows a flow graph of the systems’ activity, from the start of trans-
mission until its end.

The system allows only a flow of ASCII characters from one network to the other
without any physical channel that connects the two networks. This transference is done
solely in a transfer only mode – meaning a 100 % secure system from any malware
injection, simply because there is no bridge into it (in differ of the current solutions
such as a unidirectional optical-fiber cable [2] or the Pump invention by the American
Naval Forces [3]).

In addition, the fact that the system transfer ASCII characters explicitly means that
there is no risk of a secure metadata hidden in the data file, simply because there are
only characters and not a file. Also, in order to maintain a high reliability, several
quality control features and optimizations were embedded in the system algorithm in
order to prevent the inherent problems of unidirectional data transmit.

In this paper we discuss the Looking-Glass system and its algorithms. Section 2
will introduce the physical system and the principles of the development of the code
written for the transmitting and receiving sides; Sect. 3 will elaborate and describe the
encoding and decoding methods that were implemented at the transmitting and
receiving sides, respectively; and at last, Sect. 4 will describe the system’s benchmarks.

Fig. 1. The principles of information transport in the Looking-Glass system.

82 G. Oren et al.

2 The Physical System

The physical infrastructure of the Looking-Glass system includes usage of two phys-
ically separate computers, one as a transmitting unit and one as a receiving unit. On the
transmitting side, a computer has been installed with two screens (24 inch, 1080p) – a
screen for monitoring at the front and an internal screen inside the box to project the
encoded data to the cameras at the receiving side. At the receiving side, a computer has
been installed with one screen for monitoring at the front, and two cameras inside the
box to film the transmission screen – an SLR (Single-Lens Reflex) camera and a valid
Video camera (30 frames per second) to track and monitor the stream of transmitting
frames. The units were separated 1-meter away from each other – more than the
sufficient distance in order to capture all of the transmitting screen.

In order to prevent transmission of data using the magnetic field between the
computer of the transmitting unit (which connects to the secured confidential network)
and the computer of the receiving unit (which connects to the open network) [4–6], the
two computers have been placed in two separated and sealed Faraday cages on a
mobile facility, designed for the Looking-Glass system in a modular fashion base on
ITEM profiles, 40 � 40 cm2. The sealed box was chosen to maintain a constant quality

Description System Sketch System Pictures

The Looking-
Glass system in
closed mode.
The system is
not active at this
mode.

The Looking-
Glass system in
open mode. The
system is active
at this mode.

An internal look
into the
Looking-Glass
system.

Fig. 2. Sketches and pictures of the Looking-Glass System.

The Looking-Glass System: A Unidirectional Network 83

of frames filming, without dependence on external lighting. This box can be opened
and closed using tracks, and is installed on a mobile stand as described in Fig. 2.

The system code was developed in Python 2.7, using the OpenCV library [7], on
Ubuntu operating system, and which all were installed on the computers.

2.1 The Transmitting Side

The implementation of the file transmission process is described in the algorithm
below. In the first step, the data is divided into n equal segments of m characters in
length, when the last segment will be equal to or less than the set size. The algorithm is
performed n + 1 times, including one calibration segment. In every such action, one
segment of the data is encoded, signed and presented to the screen.

Transmitting side – the algorithm for transmitting.

Figure 3 shows a scheme of the transmitting monitor placed inside the box. In the
top part, it is possible to see the m characters encoded into a matrix of squares in
different colors. At the bottom of the figure, it is possible to see the control area, where
the QR code is shown (which represents the signature of the encoded segment) and the
geometric figure that is used as a feedback for frame transfer, or the starting and ending
of a transmission (all steps will be explained next).

2.2 The Receiving Side

The receiving side includes two processes: filming and decoding. The filming process
was implemented using a technique that is initialized automatically after initializing the
transmission process. During the process execution, progress is reported to the moni-
toring screen.

84 G. Oren et al.

The algorithm developed for the receiving side is base on a usage of two cameras:
an SLR camera, which performs the filming of the screen, and a Video camera, which
continuously tracks the control area of the transmitting screen and provides a feedback
to the filming process. The difference between the cameras is base on their quality of
resolution: The video camera, which works in video mode, gives a low quality image,
sufficient for real time decoding, while the SLR camera captures a high quality image,
which is needed for the capture of large volumes of data, and for the quality assurance
of the decoding algorithm. The frames filmed using the SLR camera are saved and
decoded, while the images of the video camera are decoded but not saved; they are
sampled through the entire duration of transmission until the end of the entire process,
and are decoded solely in order to determine the status of the transmitted frame
(substitution or end of transmission).

The identification mark chosen is a transfiguration of two geometric shapes, from a
triangle to a square, which can be captured by the video camera. Using the change of
shapes on the screen, a mark is given for filming and decoding of another image. Using
another mark, a quadrilateral, it is possible to indicate that the process has reached its
end (signaling the termination of the processes at the receiving side). The filming
process is executed continuously as long as no last-image mark has been recognized by
the Video camera, as shown in the algorithm below.

Receiving side – the algorithm for shooting pictures.

Fig. 3. The scheme of the transmitting side.

The Looking-Glass System: A Unidirectional Network 85

3 Encoding and Decoding of Information

3.1 The Process of Information Encoding

The Looking-Glass system encodes each byte of information using color squares, such
that each byte of information is converted to a separate collection of squares. The
number of squares that can be displayed on a single screen is a function of the squares
total size and the size of the area where the squares can be displayed. Given the number
of squares that can be displayed on a single screen, the number of displayed bytes per
frame is the number of those squares divided by the number of squares per byte. Given
the number of bytes per frame, the data is divided into segments of this length. After
dividing the file into segments, the system encodes each segment into a sequence of
squares. Each byte is encoded to a number of squares (base on the system configuration),
the squares are presented as a matrix – from left to right and from top to bottom – and the
color of each square is selected from a palette of defined colors whose size is the number
of colors that the system is requires to differentiate between. There are two colors that
are not part of the information encoding: black (0, 0, 0) and white (255, 255, 255). The
black color is used for mark of boundaries, and the white color is used for background.
An example of encoding the words “The Dog” can be shown in Fig. 4.

The figure shows 3 lines of color squares, and every line has 6 squares. Each
character is encoded using 2 squares, and the string “The Dog”, which is composed of
7 characters (including one whitespace), is encoded to 14 information squares, and 4
additional squares are added as placeholders.

During the system development, we chose to code each byte of information using
two color squares, such that each byte of information is converted to a separate col-
lection of squares. These two squares provide a more than the sufficient amount of
alphanumeric characters necessary for possible ASCII text file encoding. The squares
color panel contains 16 colors that provide a sufficient distance in the color spectrum to
successfully differentiate between the different colors in the decoding process. There-
fore, in order to encode each character of the ASCII code, we use two squares of 16
different colors (16 � 16 combinations), where each square’s color represents a
number between 1 and 16. This encoding method was chosen to make the conversion

Fig. 4. Encoding the words “The Dog” into color squares (The letters are for demonstration).

86 G. Oren et al.

process from image back to digital information as simple as possible. This format
allowed representing an encoded data in size of 3–4 kB on the transmitting monitor,
with 80 lines and 90 columns of squares. By that, one obtains a decoding ability at a
very high level of reliability. Obviously, these encoding parameters can be vastly larger
than in this prototype, and they are depends, as previously mentioned, on the SLR
camera and the transmitting screen resolution.

The reason for choosing this encoding method rather than transmitting an image of
the plain text is due to the following: if one had transmitted the information as raw data
into the screen, and then try to decode it after filming from a significant distance (which
creates the effects of filmography such as curvature and changing lighting), one
wouldn’t have obtained the high reliability we currently achieved using the squares
encoding method, to which we made many image processing optimizations in order to
adjust it to a remote screen filming (as will be explained in the hereby section). It is
possible that a high reliability could have been obtained by filming the information in a
raw form and decoding it using OCR algorithms, but only at the cost of enlarging the
fonts sizes, which would have made the amount of information per transfer critically
smaller – a state which eventually would cause to a significant slowdown of the whole
system functionality.

3.2 Decoding the Information Area

After filming the transmitting screen, the receiving side decomposes the image struc-
ture into two parts and decodes each part separately. The parts are the information area
and the control area, while the main phase is the decoding process of the former. This
area consists of color squares, aligned line by line, meaning that by the end of the
decoding process, we should obtain a list of all of the square’s color indexes, when the
order in this list is according to the order of appearance of the squares in the screen
from left to right and from top to bottom. The decoding of the information area includes
the following steps:

1. Converting the image to black-and-white scale and eliminating noise.
2. Accurately marking the squares matrix boundaries.
3. Identifying the squares correct order of appearance in every line.
4. Using the calculated squares position, average the real color for each square.

In the following sub-chapters we will review each of those steps and its algorithms.

3.2.1 Converting to Black-and-White Scale and Eliminating Noises
The image-processing algorithm that recognizes the squares locations needs an image
where the squares are marked in black and the matrix spaces boundaries are marked in
white. In order to obtain such an input image, we needed to convert the original image
of the information area to solely shades of black-and-white scale, and to clean out all
noises. The sub-steps in this process include converting the image to shades of gray;
using a Threshold algorithm to convert the image to black and white where information
squares are marked black and spaces are marked white; and cleaning noises, which are
black spots that do not represent information squares. The first sub-step conversion
process can be seen in the following comparison (Fig. 5).

The Looking-Glass System: A Unidirectional Network 87

The next step is converting the gray-scale image into black-and-white scale image.
In order to achieve that goal there is a need to use a Threshold algorithm [8], which can
provide separation into black and white using a threshold value, where anything higher
than this value is mapped to white, and anything lower than this value is mapped to
black. However, when the information area is represented by a small image (a few
hundred pixels in every direction), this technique works well, but when the image is
large (as in our case), using a single threshold value to perform separation is not
sufficient due to changes in the values that represent the spaces between the squares in
the various areas of the image. For instance, in the shades-of-gray image in Fig. 5, the
values of the pixels of the spaces is varying from values of 165–175 in one area of the
image, and values of 170–180 in another area. In addition, we found that in occasion
the values of color squares in a specific area are matching to the range of the space
values in another area. The three following images (Fig. 6, from left to right) show the
results while using the Threshold algorithm statically with values of 160, 170 and 180.
It is possible to see that using a threshold value of 160 results in squares that com-
pletely deleted, when few squares attached to each other. It is also possible to see that
although using a threshold value of 170 is not causing the information squares to
disappear, it is causing them to become inseparable. Lastly, a usage of a threshold value
of 180 shows that many squares turned into one black chunk. Therefore, we can
conclude that it is not simple to find a sufficient threshold value which results a well
defined black-and-white squares matrix.

The solution for this problem is given by using the adaptive version of the
Threshold algorithm. This version does not use a single value, but maps the area
around a pixel in order to determine the threshold value. An example to this algorithm
usage can be seen in the left side of Fig. 7, which shows an excellent separation of the
information squares, without any disappearing squares and without inseparable squares
zones. In order to calibrate the Adaptive Threshold function [8] we used empirical

Fig. 5. The square matrix in color (left) vs. in shades of gray (right).

Fig. 6. Performing Threshold algorithm with values of 160 (left), 170 (middle) and 180 (right).

88 G. Oren et al.

checks. Nevertheless, the image still contains black pixels originating from noise or
environmental causes. The right side of Fig. 7 shows a zoom-in of the results after the
Adaptive Threshold, and shows black pixels above the squares, which are not unified in
large groups, and are not around the squares size.

However, the next decoding algorithms still require a clean image. In order to clean
the image, we will use two known filters – Erode and Dilate [8]. The Dilate function
schematically calculates the maximal value for the area around the pixel, and changes
the pixel value to this value. This operation lessens the black area, and hence makes
single pixels, or a small amount of pixels combined together, disappear. The Erode
function calculates the minimal value in the area around a pixel and changes the pixel’s
value to this value. This operation makes the black areas thicker, and hence thickens
the square’s boundaries that were earlier diminished by the Dilate operation. The three
following images (Fig. 8, from left to right) respectively show the obtained noise after
applying Adaptive Threshold; the noise elimination by Dilate; and thickening the
squares back using Erode. At the end of the Erode operation, we obtain a clean image,
on which the decoding process can be applied.

3.2.2 Marking the Matrix Boundaries
After converting the image using Adaptive Threshold and eliminating background
noises, the obtained image contains the exact locations of most of the squares in a clear
form. However, some of the squares, especially those containing light colors, are not
completely hermetic and occasionally marked in more than one black area. In order to
fix this situation – which does not enable correct recognition of the squares – we
perform a process of identifying the separation lines (the matrix boundaries) between
the different rows and columns of the squares matrix. The premise of this process is that
even though there are squares that are not marked accurately, the most of the squares

Fig. 7. The frame after using the Adaptive Threshold algorithm (left) and a zoom-in (right).

Fig. 8. Information squares with noise (left); after Dilate (middle); and after Dilate and Erode
(right).

The Looking-Glass System: A Unidirectional Network 89

are intact and in a hermetic form, and they can be some good indicators to a total
reconstruction of the original matrix boundaries. Using this knowledge, we can gen-
erate a new image where the squares are accurately defined. This algorithm is applied
in the following form:

Marking the matrix boundaries algorithm.

The three following images (Fig. 9, from left to right) show the state of the image
after the previous cleaning process; the result after scanning the rows; and the result
after scanning the columns (by a 90 degrees’ rotation for a scan as for rows) with
overlap with the previous results. It is possible to see that the squares positions are
marked in a hermetic form. It is clearly seen that some damaged squares boundaries,
such as square [3, 7], were reconstructed hermetically.

Another example of this boundaries re-mark process can be seen in Fig. 10 which
shows another area of the original image where the squares were marked inaccurately,
and occasionally even discontinuously (meaning, with a few disconnected black spots
on the same area of a square). It can be seen that the re-marking process had fixed the
bisected squares, and that after the process they were marked accurately.

Fig. 9. The state of squares after the cleaning process (left); after scanning the rows (middle);
and after scanning the columns with an overlap with the scanned rows (right).

90 G. Oren et al.

3.2.3 Discovering Squares Correct Sequence by Walking-on-Line
Algorithm
After resulting a black-and-white scale image with the squares appearing without
noises and after a full marking process, the next step is to recognize the squares
sequence and to store the squares in a data structure in the order they appear in the
image. In order to do so, our Walking-On-Line algorithm is base on a simple funda-
mental which state that given a black pixel, it is possible to find the square shape
boundaries that containing the pixel. This fundamental exists in the OpenCV library [5]
and is implemented using the FloodFill algorithm. The basic idea underlying this
square recognition algorithm is to start the scanning process from the top left corner,
and scan from left to right and top to bottom. Each time the algorithm runs into a black
pixel, the square containing the pixel and its connected pixels are recognized. Addi-
tionally, all of the pixels in the discovered square are set with a unique index, base on
their location, in order to differentiate between the discovered squares and the squares
that already been discovered. Using this method, when the next line of pixels is
scanned and the algorithm runs into a pixel that belongs to an already-recognized
square, the algorithm would skip it and not recognize the same square twice. In this
recognition fashion, squares are found according to their order of appearance.

Seemingly, this algorithm does solve the problem; however, we note that the
algorithm is based on the assumption that a line of squares is a straight line. This was
found to be incorrect when filming long lines of squares. The camera lens creates a
distortion, which makes the received image have iris curvature [9]. Additionally, the
camera positioning might be un-aligned to the filmed screen perfectly, which makes the
lines appear tilted. An example for this curvature can be seen in Fig. 11. The figure
shows a green line starting at the left part of the second line of the squares. It can be
seen that this line (a straight, balanced line) reaches the upper pixels of the first lines in
the image shown, meaning that some squares of the first line will be recognized only
after some information squares of the second line have already been recognized – a
situation which cannot be tolerable.

Fig. 10. Segment of information with faulted, split information squares (left) vs. the information
squares after redraw (right).

Fig. 11. The curvature in the information squares is highlighted by the balanced green line.
(Color figure online)

The Looking-Glass System: A Unidirectional Network 91

The difficulty introduced by lines curvature can be dealt by assuming that the height
difference between two squares within the same line is negligible, e.g. two or three
pixels between each square at most. For the current system design, this assumption
enables recognition of the information squares adaptively at every image decoding
(since the curvature is not always identical). By using this method, the problem can be
overcome. The recognition of squares sequence is performed using the algorithm
below.

Walking-on-Line Algorithm.

Figure 12 shows an example of the algorithm actions in order to recognize the
squares correct sequence. First, the top left pixel of the first square in the line is
recognized (marked in red). The arrows show the process of recognizing the sequence,
starting from the recognized pixel, towards the center of the square, and finally to the
right, until a new square is recognized. By using this method, the heights of the scanned
squares are continuously fixed, and the squares are captured based on their order of
appearance. At the end of the recognition algorithm’s run, all of the squares are
obtained and ordered in the order of their appearance, and they are finally ready to be
decoded back to the ASCII characters they represent.

Fig. 12. Recognizing the squares correct sequence in an adaptive scanning. (Color figure online)

92 G. Oren et al.

3.2.4 The Color Decoder and Its Calibration
After achieving to get the correct boundaries of the squares and its correct sequence,
the remaining step is to convert each original color of each square into the number the
color represents, and then back to its ASCII code. As previously explained, every
character – with 8-bit limit in this prototype – is encoded into two squares, meaning
every square represents four bits (which represent 16 values). Therefore, 16 different
colors are in need, when every color of every square represents an index between 1 and
16. The task for the color decoder is to convert a color sample in RGB format from the
correctly marked square to an index between 1 and 16.

However, after filming the screen, the obtained color for each square was found to
be not identical to the color the square originally painted in at the encoding side.
Furthermore, it has been found that some colors located in different areas of the
transmitting screen were decoded with different coloring, even though the squares were
originally painted in the exact same color. This phenomenon is caused by lighting
conditions, which can be different in each part of the screen, as well as optic distortions
that affect the color sample. For example, a color square that was originally painted at
the encoding side with the color [240, 163, 255] was sampled at the decoding side with
three different values of [140, 106, 205], [144, 109, 210], and [145, 111, 211] at three
different zones of the frame. Nevertheless, based on the measurements it seems that
there is no great spatial proximity between the sampled values; however, these values –
as well as the rest of the samples – are relatively close to each other on the color
spectrum, meaning that the distortion in the conversion of the original color does not
provide a great scattering of the values.

Either way, the color decoder needs to take this phenomenon into account and
overcome it. This is done by calibrating the decoder by color ‘zones’, and not by a
‘one-to-one’ value, meaning that although a color can be decoded with a deviation from
the original RGB representation, the algorithm still will be able to recognize that a
distorted RGB representation represents a specific color which have an ASCII index
translation. In order to achieve this goal, the transmitting side encodes a calibration
image as the first frame, containing squares which represent all of the 16 different
colors in all of the different parts of the frame, and which the decoding algorithm at the
receiving side knows all of its precise original RGB representations and indexes, base
on its locations. Then, in order to represent all of the original indexes in all of the
possible zones, a 3-dimentional matrix of 256 � 256 � 256 values – which represents
all of the RGB spectrum – is set with the original indexes at each of the RGB repre-
sentations, including all of its nearest neighbors. For example, if it is known that the
green color index was set to be 7, and if it was found that the decoding of the color
square which represented this color at a specific zone in the frame was a RGB rep-
resentation of (76, 153, 0), then the value of those indexes and of all of its nearest
neighbors will be set to be 7 in the ‘translation’ matrix for further decoding of the
colors of the squares (exemplification in Fig. 13).

Note that since the chosen 16 colors are relatively far from each other on the
spectrum, it is reasonable to assume that there will be no overlap between the squares’
RGB representation in the three-dimensional matrix.

The Color Detector and its Calibration Algorithm.

The Looking-Glass System: A Unidirectional Network 93

Fig. 13. Example for square decoding: Calibrating the green color (on the left) and using the
calibration matrix to decode it (on the right). (Color figure online)

94 G. Oren et al.

3.2.5 Decoding the Control Area and Quality Control
The decoding process of the control area (Fig. 14) consist of three different, inde-
pendent parts:

1. The first part focuses on the square and rectangle, which appears alternately. These
shapes alternation indicate the receiving side on a change of the encoded infor-
mation, meaning a new information transmission has been done, and there is a need
to capture the new frame. A termination of the process is identified when a
quadrilateral is being detected.

2. The second part focuses on the quality control aspect of the process, and includes
decoding a QR code. As known [10], the QR code represents an accurate collection
of characters (in this case, 256 or 512 characters, depending on the size of the
square and the type of encoding). Using this knowledge, the encoding side takes the
textual information which needs to be transmitted as a matrix of squares and uses a
cryptographic hash function to obtain a checksum of this information, base on
sha256-512. This checksum is encoded by the program into the QR square. Using
OpenCV functions [7], this part of the control area is identified and decoded at the
receiving side. When the receiving side has both the Checksum of the encoded
information and the information itself as decoded by the decoding algorithm, the
quality control algorithm encodes the information using the same cryptographic
hash function and compares it to the checksum extracted from the QR square. If the
comparison of the two checksums is found to be identical, it means that the
information transfer has been completed successfully. Otherwise, it means that at
least one character was missed or transferred incorrectly. This method ensures the
completeness of the information transfer in an 100 % certainty (assuming checksum
reliability).

3. The third part is an accurate documentation of the frame’s name. This information is
derived and saved in the folder the frame is saved in for logging purposes.

4 Performance Tests

Performance tests for the Looking-Glass system have been executed for three different
stages of the system operation: the encoding stage, the transmission and receiving
stage, and for the decoding stage. The distribution of time for a standard 3 kB frame in
the system is shown in the following three steps. The speed of encoding, transmitting
and receiving, and decoding of a single frame is currently stand on *3 s.

Fig. 14. The information area. From right to left: the frame’s title, the recognition square for
frame switch, and the QR encoding square.

The Looking-Glass System: A Unidirectional Network 95

1. The encoding step: the data is processed into squares which instantly displayed on
the screen. This step is relatively faster than the other steps, and currently stand on
less than a second.

2. The transmission step: the data is transmitted from the transmitting side to the
receiving one. This step completely depends on the rate of the filming process (i.e.
cameras properties) and the rate of the saving process (i.e. receiving computer
properties), and it is currently stand on less than a second.

3. The decoding step: the data is extracted from the received frame, and a verification
process confirms that all of the data that have been transformed back to the original
digital form successfully. This whole process currently stands on less than two
seconds (and this time factor can be significantly improved in the future using
parallel processing at the decode process).

The three steps have been tested separately in 20 experiments. In order to verify the
system’s stability and reproducibility factors, a script was written to generate 20 simple,
textual data files with random content, with sizes that varied from 10 kB to 100 kB,
and from 100 kB to 1 MB – sizes which represents the common range of data sizes the
system will need to transfer. The files were transferred continuously, and benchmarks
was measured for each data transfer. It was found that the Looking-Glass system
performances was linear to the amount of submitted data, as expected.

5 Conclusions and Future Work

The work presented in this paper lead to the conclusion that it would be beneficial to
use the Looking-Glass system in order to securely and reliably transfer information
digitally using an optic medium. Also, this paper opens a number of prospective
directions for future research, which one immediate direction is to explore how to
optimize the system infrastructure using new hardware, and how to increase the per-
formances of the suggested algorithms, mainly using parallel processing.

Acknowledgments. This work was supported by the Lynn and William Frankel Center for
Computer Science.

References

1. Shabtai, A., Elovici, Y., Rokach, L.: A Survey of Data Leakage Detection and Prevention
Solutions. Springer Science & Business Media, New York (2012)

2. Okhravi, H., Sheldon, F.T.: Data diodes in support of trustworthy cyber infrastructure. In:
Proceedings of the Sixth Annual Workshop on Cyber Security and Information Intelligence
Research, p. 23. ACM, April 2010

3. Kang, M.H., Moskowitz, I.S., Chincheck, S.: The pump: A decade of covert fun. In:
Computer Security Applications Conference, 21st Annual, p. 7. IEEE, December 2005

96 G. Oren et al.

4. Kuhn, M.G., Anderson, R.J.: Hidden data transmission using electromagnetic emanations.
In: Kuhn, M.G., Anderson, R.J. (eds.) Information Hiding. LNCS, vol. 1525, pp. 124–142.
Springer, Heidelberg (1998)

5. Kramer, F.D., Starr, S.H.: Cyberpower and National Security. Potomac Books Inc, Lincoln
(2009)

6. Zhao, N., et al.: EMI Spy: harnessing electromagnetic interference for low-cost, rapid
prototyping of proxemic interaction. In: 2015 IEEE 12th International Conference on
Wearable and Implantable Body Sensor Networks (BSN), IEEE (2015)

7. Suarez, O.D., Carrobles, M.D.M.F., Enano, N.V., García, G.B., Gracia, I.S., Incertis, J.A.P.,
Tercero, J.S.: OpenCV Essentials. Packt Publishing Ltd., Mumbai (2014)

8. Petrou, M., Petrou, C.: Image Processing: The Fundamentals. Wiley, New York (2010)
9. Goldberg, N.: Camera Technology: the Dark Side of the Lens. Academic Press, Boston

(1992)
10. Furht, B. (ed.): Handbook of Augmented Reality. Springer Science & Business Media,

New York (2011)

The Looking-Glass System: A Unidirectional Network 97

	The Looking-Glass System: A Unidirectional Network for Secure Data Transfer Using an Optic Medium
	Abstract
	1 Introduction
	2 The Physical System
	2.1 The Transmitting Side
	2.2 The Receiving Side

	3 Encoding and Decoding of Information
	3.1 The Process of Information Encoding
	3.2 Decoding the Information Area
	3.2.1 Converting to Black-and-White Scale and Eliminating Noises
	3.2.2 Marking the Matrix Boundaries
	3.2.3 Discovering Squares Correct Sequence by Walking-on-Line Algorithm
	3.2.4 The Color Decoder and Its Calibration
	3.2.5 Decoding the Control Area and Quality Control

	4 Performance Tests
	5 Conclusions and Future Work
	Acknowledgments
	References

