
Memory-Aware Management for Heterogeneous Main Memory
using an Optimization of the Aging Paging Algorithm

Gal Oren
Department of Computer Science,

Ben-Gurion University of the Negev,
POB 653, Be’er-Sheva, Israel

Department of Physics,
Nuclear Research Center-Negev,
P.O.B. 9001, Be’er-Sheva, Israel

orenw@post.bgu.ac.il

Leonid Barenboim
Department of Mathematics and

Computer Science,
The Open University of Israel,
P.O.B. 808, Ra’anana, Israel

leonidb@openu.ac.il

Lior Amar
Parallel Machines Ltd

lior@cs.huji.ac.il

Abstract—In the near future new technologies will make it
possible to enlarge the main memory layer in the current
memory hierarchy using devices with small cost and access
penalties, such as the Storage Class Memory (SCM). In order
to use those technologies as efficiently as possible, we need to
understand how the developer and the operating system can
get the best performances while managing a new
heterogeneous main memory, which consists of multiple types
of memory with different volumes and different access speeds.
We found that the most reasonable way to introduce these new
technologies into any usable memory system would be by using
a new automated layer that selects the most appropriate
memory levels for allocating space in the memory complex,
and that moves data between memory levels of the memory
complex for optimizing performance in the fashion of paging
algorithms. Specifically, we discovered that this memory
management is optimized using a modification of the Aging
algorithm (a directive of the LRU concept) – a modification
which can improve the access speed of the heterogeneous main
memory by about 75%, and that manages to achieve the same
or better Hit / Miss ratio in almost all cases in comparison to
the current alternatives.

Keywords-Memory Hierarchies, Main Memory, Paging,
Aging Algorithm, Storage Class Memory, Heterogeneous System.

I. INTRODUCTION
Memory and storage are often assumed to be

unsophisticated, ‘flat’ resources, with simple properties, such
as a constant access time. Over the years this assumption has
been proven to be wrong, and understanding of the memory
hierarchy could be useful in order to enhance the
performance of an algorithm or a data structure. For
example, the Storage Class Memory (henceforth, SCM) is a
new technology which represents a new hybrid form of
storage and memory with unique characteristics, meaning a
memory which is non-volatile, cheap in per bit cost, has fast
access times for both read and writes using cache line access,
and is solid state. Also, the SCM is supposed to have
different versions with different access speeds and different
volumes, meaning that it might be possible to add different
SCM devices to the memory hierarchy as an extension of the
RAM, and manage this enlarged heterogeneous main
memory using special algorithms. Our hypothesis is that

achieving appropriate transferability between these new
heterogeneous main memory levels may be possible using
ideas of algorithms employed in current virtual memory
systems, and that an efficient memory-aware adaptation of
those algorithms to a heterogeneous main memory is
achievable.

In order to reach the conclusion that our hypothesis is
correct, we investigated various paging algorithms, and
found the ones that could be adapted successfully from a
standard memory hierarchy to a hierarchy with
heterogeneous main memory. We discovered that using a
memory-aware adaptation of the Aging paging algorithm
results in the best performances in terms of Hit / Miss ratio
and access speed.

In this paper we argue that memory management for
future heterogeneous main memory should include our
memory-aware optimization of the Aging paging algorithm.
We focus on the platforms that should be part of the future
heterogeneous main memory (such as SCM technology) and
on the techniques and algorithms that should allow to
optimize current and future heterogeneous main memory.
We show that an optimization of the Aging paging algorithm
makes it memory-aware with a low calculation cost. To
support our argument, we present in the second part of the
paper a detailed explanation about the different approaches
to the management of the new heterogeneous main memory.
Afterwards, in the third part of the paper, we present the
novel memory-aware optimization to the Aging paging
algorithm. Finally, in the fourth part of the paper, we present
the benchmarks that support our hypothesis, and in the last
part, we present our conclusions and the future work plans.

II. BACKGROUND

A. Memory Hierarchy Awareness
Understanding the memory hierarchy can be useful in

order to enhance the performance of an algorithm or a data
structure [1]. Algorithms and data structures that adjust to a
specific memory organization are known as memory-aware
or memory-conscious. Algorithms and data structures that
do not take into consideration memory parameters and
hierarchy are called memory-oblivious. Design of memory-
aware algorithms requires awareness of the memory

2016 45th International Conference on Parallel Processing Workshops

2332-5690/16 $31.00 © 2016 IEEE

DOI 10.1109/ICPPW.2016.29

98

2016 45th International Conference on Parallel Processing Workshops

2332-5690/16 $31.00 © 2016 IEEE

DOI 10.1109/ICPPW.2016.29

98

2016 45th International Conference on Parallel Processing Workshops

2332-5690/16 $31.00 © 2016 IEEE

DOI 10.1109/ICPPW.2016.29

98

2016 45th International Conference on Parallel Processing Workshops

2332-5690/16 $31.00 © 2016 IEEE

DOI 10.1109/ICPPW.2016.29

98

hierarchy, as the latency and bandwidth penalty between the
different levels of the memory is significant. In the
following chapters we will refer to algorithms as memory-
aware algorithms if they are taking the memory levels in
account as an integral parameter that affects the total
performance of the algorithm directly. We will refer to
algorithms as memory-oblivious algorithms if they are not
taking the memory levels in account as an integral
parameter, and simply see the memory levels as a ‘flat’
resource, in which each level of memory is treated only as
an extension of the previous one, without specified
differentiation between them.

B. Previous Work
Operating systems (henceforth, OS) implement the

virtual memory mechanism that extends the working space
for applications, mapping an external memory file (page
file) to virtual addresses. This idea supports the Random
Access Machine model [2] in which a program has an
infinitely large main memory. With virtual memory, the
application does not know where its data is located, whether
in the main memory or in the page file. This abstraction
does not have large running time penalties for simple
sequential access patterns: The OS is even able to predict
them and to load the data ahead of time.

For more complicated patterns, especially in High-
Performance Computing (henceforth, HPC), these remedies
are mostly not useful and even might be counterproductive.
The page file is accessed very frequently, the executable
code can be swapped out in favour of unnecessary data, and
the page file is highly fragmented and thus many random
I/O operations are needed for scanning. Therefore, in this
scenario, there are two options to resolve the problem: the
first option is increasing the Hit / Miss ratio and the access
speed in the virtual memory mechanism, and the second
option is an explicit handling of memory accesses. In this
scenario, the applications and their underlying algorithms
and data structures should care about the pattern and the
number of memory accesses (I/Os), which they cause.

Several simple models have been introduced for
designing I/O-efficient algorithms and data structures. The
most realistic model is the Parallel Disk Model (PDM) of
Vitter and Shriver [3]. In this model, I/Os are handled
explicitly by the application. The most common
implementation of the PDM model can be found at the
STXXL project [4]. The core of STXXL is an
implementation of the C++ standard template library STL
for external memory (out-of-core) computations, i.e.,
STXXL implements containers and algorithms that can
process huge volumes of data that only fit on disks. While
the compatibility to the STL supports ease of use and
compatibility with existing applications, another design
priority is high performance. The performance features of
STXXL include transparent support of multiple disks,
variable block length, overlapping of I/O and computation,
and prevention of OS file buffering overhead.

C. Future Memory: Storage Class Memory
Storage is considered to be a mechanical HDD that

supplies virtually unlimited capacity when compared to
RAM, and it is also perpetual, which means that data is not
lost if the computer happens to crash or disconnect from
electricity. The issue with hard drives is that in various
situations they are unable to supply data to applications with
the sufficient speed, because of their mechanism and access
fashion [1].

Storage Class Memory (SCM) [5] proposes to minimize
or even close the widening gap between CPU processing
speeds, the need to rapidly transfer big data blocks, and the
read-write speeds suggested by HDD reliant systems. The
SCM, widely known as Persistent Memory, is a technology
which represents a new hybrid form of storage and memory
with unique characteristics, meaning a memory which is
non-volatile, cheap in a per bit cost, has fast access times for
both read and writes using cache line access, and is solid
state [6]. Also, the SCM is supposed to have different
versions with different access speeds and different volumes,
meaning that it may be possible to add different SCM
devices to the memory hierarchy as an extension of the
RAM, and manage this enlarged main memory using special
algorithms, as the PDM model manages the disk complex
using STXXL library.

The SCM has a unique mechanism. Created out of flash-
based NAND, SCM is a new form of storage that can
provide a middle step between high-performance RAM and
cost-effective HDDs. It may very well provide read
performance analogous to RAM (perhaps even better in
some cases), and write performances that are significantly
faster than HDD technology (factors of hundreds better than
HDD and even beyond). Also, it is predicted that the
production costs of SCM and HDD will be broadly similar
by the end of this decade [7].

These new SCM devices connect to memory slots in a
server and are mapped and accessed in the same fashion as
the memory, even though they are slightly slower, and they
can be addressed atomically at either the byte or the block
level, unlike previous eras of storage technology. The SCM
can be used directly as execution memory or data storage
memory. The current SCM products include the improved
Flash [8], the Phase Change Memory (PCM) [9], the
Magnetic RAM (MRAM) [10], the Solid Electrolyte RAM
– Nano-Ionic RAM [11], the Ferroelectric RAM (FRAM)
[12] and the Memristor [13].

OS are likely to use the SCM as either very fast block
storage devices formatted by file systems and databases, or
as direct memory mapped “files” for next generation of
programs. In the near future the SCM is predicted to modify
the form of programs, the access form to storage, and the
way that storage devices themselves are built. Therefore, a
combination between SCM technology and the existing
RAM, using a new memory allocation manager (henceforth,
MAM) that will act like STXXL – but using cache line
access fashion – will be likely to achieve a new level of
performance for memory-aware data structures.

99999999

 We employ the following model. The main memory
with different kinds of memory speeds and volumes is
modelled by a collection (sorted according to memory
speeds) of N arrays, such that each array represents a
memory level, where level 1 is the fastest and level N is the
slowest. Each level is assigned a set of properties to specify
its speed and size.

D. Data Structures Problem in Usage of the Memory
Allocation Manager
There are clear benefits of using a MAM at the design

and implementation stage of any data structure which needs
to handle massive data sets. For example, given that the
keys are arranged in a list form, there is an option that the
first immediate key will be stored in the fastest memory
available, and as far as the list expands, the other keys will
be stored in slower memories.

Therefore, it seems reasonable to re-modify the data
structures to use those kinds of paradigms using a MAM, as
in Fig. 1. However, this kind of solution arises a problem,
which is an inherent part of this solution itself. The reason
for this problem is that a MAM require not only to re-
modify the memory platform and the access to it, but
obviously also to re-write the memory-oblivious codes that
is currently based on transparent memory access. The
chances that such a significant re-write would be
implemented in current codes using HPC platforms – the
primary target group which need this massive enlargement
of the main memory – is quite low. Most of the centres
which use large computer clusters have programs that are
intended to be operational for ages and are very big,
complex and sustainable. Hence, the solution of rewriting
the whole code and redefining the data structures to use a
MAM is not possible nor plausible, and can be efficient
only for several specific applications that are written today,
yet not for past applications.

Figure 1. An Example of a Memory Allocation Manager (MAM)

Diagram of Usage with Different Types of Memory.

Therefore, an implementation of a heterogeneous main
memory management should not incur any changes in the

data structures. This premise means that the most reasonable
way to introduce the SCM into any usable memory system
would be by implementing an automated and not code
explicit version of a MAM using an artificial intelligence
technique which can understand how to master the data in a
memory-aware fashion. Thus, introducing MAM concepts
and the multiple main memory levels awareness into the
classic paging algorithms can be a good solution, which will
not be a big performance compromise, but a modest one.
This idea is achieved by introducing a new automated layer
that selects the most appropriate memory levels for
allocating space in the memory complex, and that moves
data between memory levels of the memory complex for
optimizing performance in the fashion of paging algorithms.

III. PAGE REPLACEMENT ALGORITHMS IMPLEMENTATION
FOR HETEROGENEOUS MAIN MEMORY

A. Current Memory Management Concept and Mechanism
Computers often have five memory levels with different

properties [1]. Three of these levels dwell on the processor
chip, one level is the RAM memory and one level is the
storage memory, such as SSD or HDD. The levels on the
processor chip are referred to as L1 cache, L2 cache and L3
cache. L1 cache is a rather small piece of memory with
extremely high access time, used directly by the processor.
L2 cache is slightly slower and vastly larger than L1 cache.
L3 cache is slower than L2 and L1 caches, and it is shared
by all cores. Also, it is worth mentioning that there are
architectures with an additional cache memory level, L4,
which may result better performance than sole enlargement
of the L3 cache level [14].

However, because the amount of data that maps to a
cache section is generally much larger than the associativity
of the cache, a designated replacement policy necessarily
needs to determine which data to evict when a cache miss
occurs [1]. Unfortunately, sufficiently precise
documentation of the specific logical organization of the
memory hierarchy is seldom available publicly, and the
current knowledge on the different cache management
policies is base on specific reverse engineering simulations
[15]. Nonetheless, the current page replacement algorithms
concepts are well known [16]. Replacement policies try to
identify which data can be a proper candidate for eviction,
by basing their resolutions on the chronology of the memory
accesses. Distinguish replacement policies of this kind are
Least Recently Used (LRU) and Least Frequently Used
(LFU); pseudo-LRU (PLRU), an efficient variant of LRU
(like the Aging policy); First-In First-Out (FIFO), also
known as Round Robin; and Not-Recently Used (NRU)
[16].

Either way, no matter which paging algorithm is used, it
is known that an eviction from L1 forwards the cache line
into L2; This obviously means a new space has to be made
in L2; This in turn probably will push the data into L3 and
eventually into the main memory [16]. This mechanism is
also known as the model for an exclusive cache [17]. Other
mechanisms realize inclusive caches where each cache line
in L1 is also present in L2, and therefore an eviction from

100100100100

L1 is significantly faster [17]. In SMP and NUMA
architectures cache balancing algorithms manage to create a
constant state in which the pressure on the caches is equal
[18], and there is also a usage of paging algorithms and
replication and migration algorithms [19]. Either way, the
CPUs are permitted to manage the caches in any form as
long as the memory model specified for the processor
architecture is not modified [16].

B. Usage of Paging Concept in a Heterogeneous Main
Memory
Our hypothesis is that achieving a transferability

between memory levels may be possible using ideas of
algorithms employed in current virtual memory system, and
that the adaptation of those algorithms from a standard
memory hierarchy to a heterogeneous main memory may be
possible. In that notion, each virtual memory page is a data
entry (or entries), and each of the virtual memory swaps is
done as a MAM would do if it would have supplied with
knowledge of the appropriate levels. However, our approach
is different from that of the paging algorithms used for
cache hierarchy, specifically, cache algorithms simply
transfer data to an immediate lower memory level when the
current memory level is full, till the data reach to the main
memory or evicts to the storage.

In contrast, our management algorithms for
heterogeneous main memory will allow data to flow from
one level to another freely, and not only the way down in
the hierarchy or directly to the most upper level when
referenced. Also, because the heterogeneous main memory
handles data that is not urgently needed as data which
remains in the cache, there is no need to use the same
algorithmic simplicity of the cache mechanism, which
simply evicts pages to the next lower level when the current
level reaches its capacity. Instead, it is plausible to evict the
data to some specific memory level based on extra
knowledge that the OS already has. This approach, however,
is not in use in the cache management algorithms because of
the time overhead that cannot be tolerated in the upper
levels of the memory which reside near the CPU [16].

In order to reach a conclusion that our hypothesis is
correct, we clarified which of the paging algorithms can be
adapted successfully from a standard memory hierarchy to a
heterogeneous main memory using the ideas above, and
after thoroughly investigating the current paging mechanism
and the main paging algorithms [20], we found the LRU-
NFU algorithms – and specifically their Aging derivative –
is the best match to our goals.

C. The Memory-Aware Aging Page Replacement Algorithm
for Heterogeneous Main Memory
The Aging algorithm is a modification of NFU

algorithm which makes it possible to simulate LRU
algorithm quite well. Instead of only incrementing the
counters of pages referenced, the variation has two parts:
First, the counters are shifted right once before the R bit is
inserted, i.e., there is actually a division by 2 of the
represented decimal number. Second, the R bit is inserted to
the leftmost bit, instead of inserting it to the rightmost bit.

For instance, if a page has referenced bits 1,1,0,0,0 in the
past 5 clock ticks, its referenced counter looks as follows:
10000000, 11000000, 01100000, 00110000, 00011000.
When a page fault occurs, the page whose counter is the
lowest is removed. It is clear that a page that has not been
referenced for about K clock ticks will have K leading
zeroes in its counter (like the referenced counter in the
example at the fifth clock tick which has 3 leading zeroes
after 3 non-referenced clock ticks), and therefore will have a
lower value than a counter that has not been referenced for
K-1 clock ticks.

A transition of the memory-oblivious Aging algorithm
to be a memory-aware algorithm, for usage in a
heterogeneous main memory model, can even add another
level of sophistication, especially because of the existence
of a linear proportion between the degradation of the
referenced bits and the amount of time that a specific page
has not been in use. In this hypothesis there is an interesting
phenomenon; specifically, there is a possibility to create a
direct link between the amount of zeroes in the beginning
of the page referenced bits to the level of memory that that
page should be evicted to according to its usage proportion
(L in Formula (1)). This is achieved using a calculation
which should take only few floating-point operations, and
which is based on information that the OS already holds.
Based on the knowledge that the amount of zeroes points to
the amount of unreferenced past clock ticks – and therefore
on the page aging status – it would be wise to evict the page
straight to its proportionate level of memory base on the
following Formula (1):

L= �Amount of Initial Zero Bits

�Amount of Reference Bits
ML � � (1)

For instance, if a page has referenced counter which

equals to 00001000, while there are 3 levels in the memory
complex (ML), the proportionate level of memory (L) that
this page will be transferred to at the update stage of the OS
pages is the second level.

Therefore, a life cycle of a page should be as in the
following route: First, the page is inserted into the memory
hierarchy (using Insertion function below; Algorithm 1);
then, depending on its aging status, it is ‘diffusing’ to lower
memory levels in the complex hierarchy (using Update
function below; Algorithm 2). It is worth noting that if the
page is being referenced, it is redirected right to the first
level (also using the Update function). Hence, by forming a
dynamic pyramid hierarchy of both page and memory
necessity it becomes possible to get significantly better
performances for the Aging paging algorithm in a
heterogeneous main memory.

Algorithm 1
• Set memory levels to N.

/* ML = N */
• Set current memory level pointer to the highest.

/* L = 1 */

101101101101

1. Insertion of a new page P:
1.1. If the current memory level pointer is outside the

lowest memory level /* L > ML */:
1.1.1. Return False. /* Recursion Termination */

1.2. Call to the page P.
1.3. If the page P exists in the memory / storage:

1.3.1. Check if placing in the L-level of memory is
possible.

1.3.2. If placement possible:
1.3.2.1. Place page P at the L-level of

memory.
1.3.2.2. Return True. /* Recursion Termination

*/
1.3.3. Else If placement impossible:

1.3.3.1. Find the page with the lowest
referenced counter which has not
presently been referenced:

1.3.3.1.1. tmpP = Remove and Fetch the
page with the lowest referenced
counter.

1.3.3.1.2. Place the page P instead of the
removed page.

1.3.3.1.3. Calculate L by Formula (1).
1.3.3.1.4. Do Insertion of the removed

page tmpP to level L. /*
Recursion Invocation */

1.3.3.2. If no such page has been found:
1.3.3.2.1. Do Insertion of page P to level

L+1.
1.4. Else If page does not exist in the memory /

storage:
1.4.1. Return False. /* Recursion Termination */

Algorithm 2
1. Update of an existing page (by the OS):

1.1. If Read / Write action performed on the page:
1.1.1. Set R bit to 1 (R = 1).

1.2. If clock interrupt:
1.2.1. Right Shift one bit to the page counter.
1.2.2. Add the R bit to the leftmost bit of the page

counter.
1.2.3. newL = Calculate L by Formula (1).
1.2.4. If newL ≠ L:

1.2.4.1. tmpP = Remove and Fetch the page
with the lowest referenced counter.

1.2.4.2. Do Insertion of the removed page
tmpP to level newL.

It is worth noting that an implementation of the
suggested algorithm with an update at every clock tick can
cause a waste of precious CPU cycles. Also, current page
replacement paradigms are based on a linear time
complexity. Due to such practical concerns, Linux OS for
example, implements Second Chance replacement algorithm
with 2-Q [21] which neither requires repetitive calculation
of page’s ages at every clock tick, nor has a high-complexity
page replacement cost. Therefore, in order to enhance
performances on the one hand without degrading them on
the other hand, it is possible to use the algorithm as a
secondary assisting memory management algorithm. Also,
in order to minimize the overhead of this algorithm we
suggest an update only every several cycles, which will be
in proportion to the size of the working set of the process.

D. Simulative Implementation of Memory-Aware Paging
Algorithms
In order to verify our hypothesis regarding the

generalization needed to transfer the memory-oblivious
Aging page replacement algorithm to be applicable to
multiple levels of memory in a memory-aware fashion, we
created a simulator that is able to run on any computer, and
that is able to simulate a situation in which frames of
memory are managed and mapped to specific levels of
memory in a memory-aware or in a memory-oblivious
fashion, based on the chosen algorithm. The simulator
works in a uniform memory access (UMA) and its inputs
can be selected either randomly or explicitly. In our
benchmarks we used a strict model of random only inputs to
verify our hypothesis.

E. Algorithms Benchmark
In order to verify our hypothesis regarding the

beneficence of using the modified memory-aware Aging
page replacement algorithm in heterogeneous main memory,
and especially when this memory complex is a complex of
standard RAM and different types of Storage Class Memory
(SCM), we need to verify two main hypotheses:

• First, that the memory-aware algorithm is resulting

in an equally efficient Hit / Miss ratio as the
memory-oblivious Aging algorithm when it
implemented on heterogeneous main memory
using the explicit cache mechanism. The explicit
cache mechanism is the point of reference to the
new algorithm because unlike the implicit cache
mechanism it is not duplicating data to a lower
level, and clearly keeps the different levels in the
hierarchy independent.

• Second, that the memory-aware algorithm is
resulting in a significantly better access speed than

102102102102

the memory-oblivious Aging algorithm when it is
implemented on heterogeneous main memory
using the explicit cache mechanism. This
parameter should show that the optimization to the
classic memory-oblivious Aging algorithm actually
manages to transfer the different pages to their
designated memory levels in the memory complex
based on the proportionate frequency of their
usage, and that this redirection of pages actually
manages to move the more needed pages to a better
access-time levels in the memory complex, and by
that to achieve better total performances.

Therefore, we tested and compared the two types of

algorithms – the memory-aware Aging and the memory-
oblivious Aging – on two different platforms:

1. A uniformed model of 3-level main memory which

consist of a classic one-level memory (RAM only)
and two extra memory levels with the same volume
– for accurate comparability measurements – as the
first level. Those two extra levels were simulating
two different types of SCM devices: One which was
2 times slower than the RAM, and the other which
was 3 times slower than the RAM.

2. A more realistic model of 3-level main memory
which consist of a classic one-level memory (RAM
only) and two extra memory levels with different
volumes in an ascending volume hierarchy. Those
two extra levels were simulating two different types
of SCM devices: one which was 2 times slower but
10 times larger than the RAM, and the other which
was 3 times slower but 100 times larger than the
RAM.

Due to the fact that the results of the benchmarks on the

two platforms were almost the same with a slight advantage
to platform 2, we will present only the last results without
underestimating the importance of the first ones.

F. Results and Analysis
As previously mentioned, the benchmark of the

algorithms, using our simulation, has been performed on
two different architectures, using several parameters. The
following graphs show this benchmark result, the Hit / Miss
ratio and the average memory level access, which will be
presented as a function of the amount of page references (R)
when the amount of frames in memory (F) and the amount
of unique page indexes (I) are fixed. We ranged the amount
of page references in two scales: The first scale ranged from
10 till 100, and the second scale ranged from 1000 till 1
million. The purpose of those two scales is to examine the
performance of the simulation in normal usage scale and in
intense HPC scale, respectively.

In order to verify our hypothesis, we compared the new
optimized memory-aware Aging algorithm with a memory-
oblivious Aging algorithm which is not aware of the
multiple levels of the memory complex as we suggested in
this paper. The most reasonable way to implement this

algorithm was by using the same technique the exclusive
cache mechanism manages the transferability of data
between the different cache levels, i.e., by transferring data
from one level to a lower one when the current level is full,
and not to a specific level based on prior knowledge, as the
mechanism of the optimized memory-aware Aging
algorithm does.

Therefore, we re-examined the Hit / Miss ratio as a
function of the amount of page references (R) using
platform 2 for both algorithms and discovered that the Hit /
Miss ratio as a function of the amount of page references
(Fig. 2) was finally almost the same, meaning that despite
the fact that the optimized memory-aware Aging algorithm
is transferring data to other levels even before the memory
level is full, there is no negative impact on the Hit / Miss
ratio.

Furthermore, and most importantly, we examined the
access speed to the memory complex – in this case by the
average memory-level access – as a function of the amount
of page references (R) (Fig. 3), and discovered that the
memory-aware Aging algorithm is yielding about 75%
improvement in the access speed over the memory-oblivious
Aging algorithm, as evident from the lower average access
levels in comparison to the memory-oblivious algorithm
(Recall that the memory levels are ordered according to
their speed, and lower levels are faster). This means that
although the Hit / Miss ratio in both algorithms is almost the
same in most cases, there is a clear advantage to the
memory-aware Aging algorithm, as it resulting in much
better performances than the memory-oblivious Aging
algorithm using heterogeneous main memory.

In addition to the previous results, we examined whether
the optimization mechanism that we previously suggested
and tested yields the same performances when pages are
redirected to a different level in the memory complex than
the level that Formula (1) suggests. Our hypothesis is that
Formula (1) is the most appropriate formula, and using a
different one would reduce performance. In order to verify
this assumption, we examined the results of the memory-
aware Aging paging algorithm using platform 2 with
intentional modification where there is no direct link
between the amount of zeroes in the beginning of the page
referenced bits to the level of memory that that page should
be evicted to.

In order to test the hypothesis that by forming a dynamic
pyramid hierarchy of both page and memory necessity it
was possible to get the best performances for a paging
algorithm in a multi-level main memory, we modify the
behaviour of the algorithm to select different levels rather
than the correct direct levels. Specifically, if a page at level
1 was directed towards level 2 in our original algorithm, it is
actually redirected to level 3 and vice versa. Afterwards, we
re-examined the Hit / Miss ratio of the modified algorithm
as a function of the amount of page references (R) (Fig. 4)
and discovered, unsurprisingly, that there was a loss in
performance in comparison to our original algorithm. This
loss can be explained by eviction of pages from the
heterogeneous memory-complex although those pages were

103103103103

actually more needed than the pages that ultimately
remained in the memory.

Figure 2. Memory-Oblivious vs. Memory-Aware Hit / Miss ratio as
function of the Amount of Page References in a Heterogeneous Main

Memory (Platform 2).

Figure 3. Memory-Oblivious vs. Memory-Aware Average Memory-Level
Access as a function of the Amount of Page References in a Heterogeneous

Main Memory (Platform 2).

Figure 4. Optimal Memory-Aware vs. Suboptimal Memory-Aware Hit /

Miss ratio as function of the Amount of Page References in a
Heterogeneous Main Memory (Platform 2).

IV. CONCLUSIONS AND FUTURE WORK
Those benchmarks, results and analysis lead to the

conclusion that it would be beneficial to use the memory-
aware Aging paging algorithm in a heterogeneous main
memory which includes SCM devices in standard
computing systems as well as in HPC clusters.

This paper opens a number of prospective directions for
future research. One immediate direction is to explore how
the memory-aware Aging paging algorithm is reacting when
the memory levels are not from the same class, and what
exactly does that mean in aspects of cost, volume, memory-
access fashion and access of speed. Another direction is to
understand how to optimize other memory management
algorithms which are not paging algorithms for beneficial
usage of the heterogeneous main memory.

Finally, we also expect that in the near future the SCM
invention will be a real and widespread technology,
meaning that investigating actual SCM devices, applying
our algorithm in managing them as part of a heterogeneous
main memory, and comparing the results to the presented
simulations would be a fertile ground for further research
and development.

ACKNOWLEDGMENTS
We thank the reviewers for their useful comments.
This work was supported by the Lynn and William

Frankel Center for Computer Science, and by Israel Science
Foundation grant 724/15.

This research was also supported by the Open University
of Israel Research Fund. Part of this work has been
performed while the first-named author was a M.Sc. student
at the Open University of Israel.

REFERENCES
[1] Andrew S. Tanenbaum, Modern Operating Systems, Prentice Hall,

4nd edition, 2014.
[2] Von Neumann, John, First Draft of a Report on the EDVAC, IEEE

Annals of the History of Computing 4, 1993, 27-75.
[3] Vitter, Jeffrey Scott, Elizabeth A. M. Shriver, Algorithms for

Parallel Memory, II: Hierarchical Multilevel Memories,
Algorithmica 12.2-3, 1994, 148-169.

[4] Dementiev, Roman, Lutz Kettner, Peter Sanders, STXXL: Standard
Template Library for XXL Data Sets, Softw., Pract. Exper. 38.6,
2008, 589-637.

[5] Freitas, Richard, Winfried Wilcke, Bülent Kurdi, G. W. Burr,
Storage Class Memory, Technology and Use, In Tutorial, 6th
USENIX Conference on File and Storage Technologies, 2008.

[6] Huang, C.Y., Storage Class Memory, Final Report – IEE5009:
Memory Systems, Institute of Electronics, National Chiao-Tung
University, Fall 2012.

[7] Hession David, Nigel Mc Kelvey, Kevin Curran, Storage Class
Memory, International Journal of E-Business Development IJED 4.1,
2013.

[8] Burr, G.W., Virwani, K., Shenoy, R.S., Padilla, A., BrightSky, M.,
Joseph, E.A., Lofaro, M., Kellock, A.J., King, R.S., Nguyen, K. and
Bowers, A, Large-scale (512kbit) integration of multilayer-ready
access-devices based on mixed-ionic-electronic-conduction
(MIEC) at 100% yield, In VLSI Technology (VLSIT), Symposium
on (pp. 41-42), IEEE, 2012.

104104104104

[9] Numonyx, The basics of phase change memory (PCM) technology,
White Paper, 2010.

[10] Shenoy, R.S., Gopalakrishnan, K., Jackson, B., Virwani, K., Burr,
G.W., Rettner, C.T., Padilla, A., Bethune, D.S., Shelby, R.M.,
Kellock, A.J. and Breitwisch, M., Endurance and scaling trends of
novel access-devices for multi-layer crosspoint-memory based on
mixed-ionic-electronic-conduction (MIEC) materials, In VLSI
Technology (VLSIT), 2011 Symposium on (pp. 94-95), IEEE, June
2011.

[11] Byrne, S, University develops PMC memory, a potential Flash
killer, myce, 1 November 2007.

[12] Freitas, Richard F., Winfried W. Wilcke., Storage-class memory:
The next storage system technology, IBM Journal of Research and
Development 52.4.5: 439-447, 2008.

[13] Chen, Y.C., Rettner, C.T., Raoux, S., Burr, G.W., Chen, S.H., Shelby,
R.M., Salinga, M., Risk, W.P., Happ, T.D., McClelland, G.M. and
Breitwisch, M., Ultra-thin phase-change bridge memory device
using GeSb, In International Electron Devices Meeting (pp. 777-
780), December 2006.

[14] Bezerra, Carlos Eduardo B., Cláudio FR Geyer, A short study of the
addition of an L4 cache memory with interleaved cache hierarchy
to multicore architectures, Institudo de Informatica, Universidade
Federal do Rio Grande do Sul.

[15] Abel, Andrew, Jan Reineke, Reverse engineering of cache
replacement policies in Intel microprocessors and their
evaluation, Performance Analysis of Systems and Software
(ISPASS), 2014 IEEE International Symposium on. IEEE, 2014.

[16] Jacob, Bruce, Spencer Ng, David Wang, Memory systems: cache,
RAM, disk, Morgan Kaufmann, 2010.

[17] Zheng, Ying, Brian T. Davis, Matthew Jordan, Performance
evaluation of exclusive cache hierarchies, In Performance Analysis
of Systems and Software, 2004 IEEE International Symposium on-
ISPASS, pp. 89-96. IEEE, 2004.

[18] Majo, Zoltan, Thomas R. Gross, Memory management in NUMA
multicore systems: trapped between cache contention and
interconnect overhead, In ACM SIGPLAN Notices, vol. 46, no. 11,
pp. 11-20. ACM, 2011.

[19] Black, David L., Anoop Gupta, Wolf-Dietrich Weber, Competitive
Management of Distributed Shared Memory, Distributed Shared
Memory: Concepts and Systems 21 (1998): 73.

[20] Oren, Gal, Optimizations of Management Algorithms for Multi-
Level Memory Hierarchy. Diss. The Open University, 2015.

[21] Johnson, Theodore, and Dennis Shasha. 2Q: A Low Overhead High
Performance Buffer Management Replacement Algorithm.
(1994).

105105105105

