
Memory-Aware Management for Heterogeneous Main Memory                          
using an Optimization of the Aging Paging Algorithm 

Gal Oren 
Department of Computer Science, 

Ben-Gurion University of the Negev, 
POB 653, Be’er-Sheva, Israel  

Department of Physics, 
Nuclear Research Center-Negev, 
P.O.B. 9001, Be’er-Sheva, Israel 

orenw@post.bgu.ac.il 

Leonid Barenboim 
Department of Mathematics and 

Computer Science, 
The Open University of Israel, 
P.O.B. 808, Ra’anana, Israel 

leonidb@openu.ac.il  

Lior Amar 
Parallel Machines Ltd 

lior@cs.huji.ac.il 
 

 
 

Abstract—In the near future new technologies will make it 
possible to enlarge the main memory layer in the current 
memory hierarchy using devices with small cost and access 
penalties, such as the Storage Class Memory (SCM). In order 
to use those technologies as efficiently as possible, we need to 
understand how the developer and the operating system can 
get the best performances while managing a new 
heterogeneous main memory, which consists of multiple types 
of memory with different volumes and different access speeds. 
We found that the most reasonable way to introduce these new 
technologies into any usable memory system would be by using 
a new automated layer that selects the most appropriate 
memory levels for allocating space in the memory complex, 
and that moves data between memory levels of the memory 
complex for optimizing performance in the fashion of paging 
algorithms. Specifically, we discovered that this memory 
management is optimized using a modification of the Aging 
algorithm (a directive of the LRU concept) – a modification 
which can improve the access speed of the heterogeneous main 
memory by about 75%, and that manages to achieve the same 
or better Hit / Miss ratio in almost all cases in comparison to 
the current alternatives.  

Keywords-Memory Hierarchies, Main Memory, Paging, 
Aging Algorithm, Storage Class Memory, Heterogeneous System. 

I.  INTRODUCTION 
Memory and storage are often assumed to be 

unsophisticated, ‘flat’ resources, with simple properties, such 
as a constant access time. Over the years this assumption has 
been proven to be wrong, and understanding of the memory 
hierarchy could be useful in order to enhance the 
performance of an algorithm or a data structure. For 
example, the Storage Class Memory (henceforth, SCM) is a 
new technology which represents a new hybrid form of 
storage and memory with unique characteristics, meaning a 
memory which is non-volatile, cheap in per bit cost, has fast 
access times for both read and writes using cache line access, 
and is solid state. Also, the SCM is supposed to have 
different versions with different access speeds and different 
volumes, meaning that it might be possible to add different 
SCM devices to the memory hierarchy as an extension of the 
RAM, and manage this enlarged heterogeneous main 
memory using special algorithms. Our hypothesis is that 

achieving appropriate transferability between these new 
heterogeneous main memory levels may be possible using 
ideas of algorithms employed in current virtual memory 
systems, and that an efficient memory-aware adaptation of 
those algorithms to a heterogeneous main memory is 
achievable.  

In order to reach the conclusion that our hypothesis is 
correct, we investigated various paging algorithms, and 
found the ones that could be adapted successfully from a 
standard memory hierarchy to a hierarchy with 
heterogeneous main memory. We discovered that using a 
memory-aware adaptation of the Aging paging algorithm 
results in the best performances in terms of Hit / Miss ratio 
and access speed. 

In this paper we argue that memory management for 
future heterogeneous main memory should include our 
memory-aware optimization of the Aging paging algorithm. 
We focus on the platforms that should be part of the future 
heterogeneous main memory (such as SCM technology) and 
on the techniques and algorithms that should allow to 
optimize current and future heterogeneous main memory. 
We show that an optimization of the Aging paging algorithm 
makes it memory-aware with a low calculation cost. To 
support our argument, we present in the second part of the 
paper a detailed explanation about the different approaches 
to the management of the new heterogeneous main memory. 
Afterwards, in the third part of the paper, we present the 
novel memory-aware optimization to the Aging paging 
algorithm. Finally, in the fourth part of the paper, we present 
the benchmarks that support our hypothesis, and in the last 
part, we present our conclusions and the future work plans. 

II. BACKGROUND 

A. Memory Hierarchy Awareness 
Understanding the memory hierarchy can be useful in 

order to enhance the performance of an algorithm or a data 
structure [1]. Algorithms and data structures that adjust to a 
specific memory organization are known as memory-aware 
or memory-conscious. Algorithms and data structures that 
do not take into consideration memory parameters and 
hierarchy are called memory-oblivious. Design of memory-
aware algorithms requires awareness of the memory 
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hierarchy, as the latency and bandwidth penalty between the 
different levels of the memory is significant. In the 
following chapters we will refer to algorithms as memory-
aware algorithms if they are taking the memory levels in 
account as an integral parameter that affects the total 
performance of the algorithm directly. We will refer to 
algorithms as memory-oblivious algorithms if they are not 
taking the memory levels in account as an integral 
parameter, and simply see the memory levels as a ‘flat’ 
resource, in which each level of memory is treated only as 
an extension of the previous one, without specified 
differentiation between them. 

B. Previous Work 
Operating systems (henceforth, OS) implement the 

virtual memory mechanism that extends the working space 
for applications, mapping an external memory file (page 
file) to virtual addresses. This idea supports the Random 
Access Machine model [2] in which a program has an 
infinitely large main memory. With virtual memory, the 
application does not know where its data is located, whether 
in the main memory or in the page file. This abstraction 
does not have large running time penalties for simple 
sequential access patterns: The OS is even able to predict 
them and to load the data ahead of time. 

For more complicated patterns, especially in High-
Performance Computing (henceforth, HPC), these remedies 
are mostly not useful and even might be counterproductive. 
The page file is accessed very frequently, the executable 
code can be swapped out in favour of unnecessary data, and 
the page file is highly fragmented and thus many random 
I/O operations are needed for scanning. Therefore, in this 
scenario, there are two options to resolve the problem: the 
first option is increasing the Hit / Miss ratio and the access 
speed in the virtual memory mechanism, and the second 
option is an explicit handling of memory accesses. In this 
scenario, the applications and their underlying algorithms 
and data structures should care about the pattern and the 
number of memory accesses (I/Os), which they cause. 

Several simple models have been introduced for 
designing I/O-efficient algorithms and data structures. The 
most realistic model is the Parallel Disk Model (PDM) of 
Vitter and Shriver [3]. In this model, I/Os are handled 
explicitly by the application. The most common 
implementation of the PDM model can be found at the 
STXXL project [4]. The core of STXXL is an 
implementation of the C++ standard template library STL 
for external memory (out-of-core) computations, i.e., 
STXXL implements containers and algorithms that can 
process huge volumes of data that only fit on disks. While 
the compatibility to the STL supports ease of use and 
compatibility with existing applications, another design 
priority is high performance. The performance features of 
STXXL include transparent support of multiple disks, 
variable block length, overlapping of I/O and computation, 
and prevention of OS file buffering overhead. 

C. Future Memory: Storage Class Memory 
Storage is considered to be a mechanical HDD that 

supplies virtually unlimited capacity when compared to 
RAM, and it is also perpetual, which means that data is not 
lost if the computer happens to crash or disconnect from 
electricity. The issue with hard drives is that in various 
situations they are unable to supply data to applications with 
the sufficient speed, because of their mechanism and access 
fashion [1]. 

Storage Class Memory (SCM) [5] proposes to minimize 
or even close the widening gap between CPU processing 
speeds, the need to rapidly transfer big data blocks, and the 
read-write speeds suggested by HDD reliant systems. The 
SCM, widely known as Persistent Memory, is a technology 
which represents a new hybrid form of storage and memory 
with unique characteristics, meaning a memory which is 
non-volatile, cheap in a per bit cost, has fast access times for 
both read and writes using cache line access, and is solid 
state [6]. Also, the SCM is supposed to have different 
versions with different access speeds and different volumes, 
meaning that it may be possible to add different SCM 
devices to the memory hierarchy as an extension of the 
RAM, and manage this enlarged main memory using special 
algorithms, as the PDM model manages the disk complex 
using STXXL library. 

The SCM has a unique mechanism. Created out of flash-
based NAND, SCM is a new form of storage that can 
provide a middle step between high-performance RAM and 
cost-effective HDDs. It may very well provide read 
performance analogous to RAM (perhaps even better in 
some cases), and write performances that are significantly 
faster than HDD technology (factors of hundreds better than 
HDD and even beyond). Also, it is predicted that the 
production costs of SCM and HDD will be broadly similar 
by the end of this decade [7]. 

These new SCM devices connect to memory slots in a 
server and are mapped and accessed in the same fashion as 
the memory, even though they are slightly slower, and they 
can be addressed atomically at either the byte or the block 
level, unlike previous eras of storage technology. The SCM 
can be used directly as execution memory or data storage 
memory. The current SCM products include the improved 
Flash [8], the Phase Change Memory (PCM) [9], the 
Magnetic RAM (MRAM) [10], the Solid Electrolyte RAM 
– Nano-Ionic RAM [11], the Ferroelectric RAM (FRAM) 
[12] and the Memristor [13]. 

OS are likely to use the SCM as either very fast block 
storage devices formatted by file systems and databases, or 
as direct memory mapped “files” for next generation of 
programs. In the near future the SCM is predicted to modify 
the form of programs, the access form to storage, and the 
way that storage devices themselves are built. Therefore, a 
combination between SCM technology and the existing 
RAM, using a new memory allocation manager (henceforth, 
MAM) that will act like STXXL – but using cache line 
access fashion – will be likely to achieve a new level of 
performance for memory-aware data structures. 
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 We employ the following model. The main memory 
with different kinds of memory speeds and volumes is 
modelled by a collection (sorted according to memory 
speeds) of N arrays, such that each array represents a 
memory level, where level 1 is the fastest and level N is the 
slowest. Each level is assigned a set of properties to specify 
its speed and size. 

D. Data Structures Problem in Usage of the Memory 
Allocation Manager 
There are clear benefits of using a MAM at the design 

and implementation stage of any data structure which needs 
to handle massive data sets. For example, given that the 
keys are arranged in a list form, there is an option that the 
first immediate key will be stored in the fastest memory 
available, and as far as the list expands, the other keys will 
be stored in slower memories. 

Therefore, it seems reasonable to re-modify the data 
structures to use those kinds of paradigms using a MAM, as 
in Fig. 1. However, this kind of solution arises a problem, 
which is an inherent part of this solution itself. The reason 
for this problem is that a MAM require not only to re-
modify the memory platform and the access to it, but 
obviously also to re-write the memory-oblivious codes that 
is currently based on transparent memory access. The 
chances that such a significant re-write would be 
implemented in current codes using HPC platforms – the 
primary target group which need this massive enlargement 
of the main memory – is quite low. Most of the centres 
which use large computer clusters have programs that are 
intended to be operational for ages and are very big, 
complex and sustainable. Hence, the solution of rewriting 
the whole code and redefining the data structures to use a 
MAM is not possible nor plausible, and can be efficient 
only for several specific applications that are written today, 
yet not for past applications. 

 

 
Figure 1.  An Example of a Memory Allocation Manager (MAM) 

Diagram of Usage with Different Types of Memory. 

Therefore, an implementation of a heterogeneous main 
memory management should not incur any changes in the 

data structures. This premise means that the most reasonable 
way to introduce the SCM into any usable memory system 
would be by implementing an automated and not code 
explicit version of a MAM using an artificial intelligence 
technique which can understand how to master the data in a 
memory-aware fashion. Thus, introducing MAM concepts 
and the multiple main memory levels awareness into the 
classic paging algorithms can be a good solution, which will 
not be a big performance compromise, but a modest one. 
This idea is achieved by introducing a new automated layer 
that selects the most appropriate memory levels for 
allocating space in the memory complex, and that moves 
data between memory levels of the memory complex for 
optimizing performance in the fashion of paging algorithms. 

III. PAGE REPLACEMENT ALGORITHMS IMPLEMENTATION 
FOR HETEROGENEOUS MAIN MEMORY 

A. Current Memory Management Concept and Mechanism  
Computers often have five memory levels with different 

properties [1]. Three of these levels dwell on the processor 
chip, one level is the RAM memory and one level is the 
storage memory, such as SSD or HDD. The levels on the 
processor chip are referred to as L1 cache, L2 cache and L3 
cache. L1 cache is a rather small piece of memory with 
extremely high access time, used directly by the processor. 
L2 cache is slightly slower and vastly larger than L1 cache. 
L3 cache is slower than L2 and L1 caches, and it is shared 
by all cores. Also, it is worth mentioning that there are 
architectures with an additional cache memory level, L4, 
which may result better performance than sole enlargement 
of the L3 cache level [14].  

However, because the amount of data that maps to a 
cache section is generally much larger than the associativity 
of the cache, a designated replacement policy necessarily 
needs to determine which data to evict when a cache miss 
occurs [1]. Unfortunately, sufficiently precise 
documentation of the specific logical organization of the 
memory hierarchy is seldom available publicly, and the 
current knowledge on the different cache management 
policies is base on specific reverse engineering simulations 
[15]. Nonetheless, the current page replacement algorithms 
concepts are well known [16]. Replacement policies try to 
identify which data can be a proper candidate for eviction, 
by basing their resolutions on the chronology of the memory 
accesses. Distinguish replacement policies of this kind are 
Least Recently Used (LRU) and Least Frequently Used 
(LFU); pseudo-LRU (PLRU), an efficient variant of LRU 
(like the Aging policy); First-In First-Out (FIFO), also 
known as Round Robin; and Not-Recently Used (NRU) 
[16].  

Either way, no matter which paging algorithm is used, it 
is known that an eviction from L1 forwards the cache line 
into L2; This obviously means a new space has to be made 
in L2; This in turn probably will push the data into L3 and 
eventually into the main memory [16]. This mechanism is 
also known as the model for an exclusive cache [17]. Other 
mechanisms realize inclusive caches where each cache line 
in L1 is also present in L2, and therefore an eviction from 
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L1 is significantly faster [17]. In SMP and NUMA 
architectures cache balancing algorithms manage to create a 
constant state in which the pressure on the caches is equal 
[18], and there is also a usage of paging algorithms and 
replication and migration algorithms [19]. Either way, the 
CPUs are permitted to manage the caches in any form as 
long as the memory model specified for the processor 
architecture is not modified [16]. 

B. Usage of Paging Concept in a Heterogeneous Main 
Memory 
Our hypothesis is that achieving a transferability 

between memory levels may be possible using ideas of 
algorithms employed in current virtual memory system, and 
that the adaptation of those algorithms from a standard 
memory hierarchy to a heterogeneous main memory may be 
possible. In that notion, each virtual memory page is a data 
entry (or entries), and each of the virtual memory swaps is 
done as a MAM would do if it would have supplied with 
knowledge of the appropriate levels. However, our approach 
is different from that of the paging algorithms used for 
cache hierarchy, specifically, cache algorithms simply 
transfer data to an immediate lower memory level when the 
current memory level is full, till the data reach to the main 
memory or evicts to the storage. 

In contrast, our management algorithms for 
heterogeneous main memory will allow data to flow from 
one level to another freely, and not only the way down in 
the hierarchy or directly to the most upper level when 
referenced. Also, because the heterogeneous main memory 
handles data that is not urgently needed as data which 
remains in the cache, there is no need to use the same 
algorithmic simplicity of the cache mechanism, which 
simply evicts pages to the next lower level when the current 
level reaches its capacity. Instead, it is plausible to evict the 
data to some specific memory level based on extra 
knowledge that the OS already has. This approach, however, 
is not in use in the cache management algorithms because of 
the time overhead that cannot be tolerated in the upper 
levels of the memory which reside near the CPU [16].  

In order to reach a conclusion that our hypothesis is 
correct, we clarified which of the paging algorithms can be 
adapted successfully from a standard memory hierarchy to a 
heterogeneous main memory using the ideas above, and 
after thoroughly investigating the current paging mechanism 
and the main paging algorithms [20], we found the LRU-
NFU algorithms – and specifically their Aging derivative – 
is the best match to our goals. 

C. The Memory-Aware Aging Page Replacement Algorithm 
for Heterogeneous Main Memory 
The Aging algorithm is a modification of NFU 

algorithm which makes it possible to simulate LRU 
algorithm quite well. Instead of only incrementing the 
counters of pages referenced, the variation has two parts: 
First, the counters are shifted right once before the R bit is 
inserted, i.e., there is actually a division by 2 of the 
represented decimal number. Second, the R bit is inserted to 
the leftmost bit, instead of inserting it to the rightmost bit. 

For instance, if a page has referenced bits 1,1,0,0,0 in the 
past 5 clock ticks, its referenced counter looks as follows: 
10000000, 11000000, 01100000, 00110000, 00011000. 
When a page fault occurs, the page whose counter is the 
lowest is removed. It is clear that a page that has not been 
referenced for about K clock ticks will have K leading 
zeroes in its counter (like the referenced counter in the 
example at the fifth clock tick which has 3 leading zeroes 
after 3 non-referenced clock ticks), and therefore will have a 
lower value than a counter that has not been referenced for 
K-1 clock ticks. 

A transition of the memory-oblivious Aging algorithm 
to be a memory-aware algorithm, for usage in a 
heterogeneous main memory model, can even add another 
level of sophistication, especially because of the existence 
of a linear proportion between the degradation of the 
referenced bits and the amount of time that a specific page 
has not been in use. In this hypothesis there is an interesting 
phenomenon; specifically, there is a possibility to create a 
direct link between the amount of zeroes in the beginning 
of the page referenced bits to the level of memory that that 
page should be evicted to according to its usage proportion 
(L in Formula (1)). This is achieved using a calculation 
which should take only few floating-point operations, and 
which is based on information that the OS already holds. 
Based on the knowledge that the amount of zeroes points to 
the amount of unreferenced past clock ticks – and therefore 
on the page aging status – it would be wise to evict the page 
straight to its proportionate level of memory base on the 
following Formula (1): 

 

L= �Amount of Initial Zero Bits

�Amount of Reference Bits
ML � �                       (1) 

 
For instance, if a page has referenced counter which 

equals to 00001000, while there are 3 levels in the memory 
complex (ML), the proportionate level of memory (L) that 
this page will be transferred to at the update stage of the OS 
pages is the second level.  

Therefore, a life cycle of a page should be as in the 
following route: First, the page is inserted into the memory 
hierarchy (using Insertion function below; Algorithm 1); 
then, depending on its aging status, it is ‘diffusing’ to lower 
memory levels in the complex hierarchy (using Update 
function below; Algorithm 2). It is worth noting that if the 
page is being referenced, it is redirected right to the first 
level (also using the Update function). Hence, by forming a 
dynamic pyramid hierarchy of both page and memory 
necessity it becomes possible to get significantly better 
performances for the Aging paging algorithm in a 
heterogeneous main memory. 
 
Algorithm 1 
• Set memory levels to N.  

/* ML = N */ 
• Set current memory level pointer to the highest.  

/* L = 1 */ 
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1. Insertion of a new page P: 
1.1. If the current memory level pointer is outside the 

lowest memory level /* L > ML */:  
1.1.1. Return False. /* Recursion Termination */ 

1.2. Call to the page P. 
1.3. If the page P exists in the memory / storage: 

1.3.1. Check if placing in the L-level of memory is 
possible. 

1.3.2. If placement possible: 
1.3.2.1. Place page P at the L-level of 

memory. 
1.3.2.2. Return True. /* Recursion Termination 

*/ 
1.3.3. Else If placement impossible: 

1.3.3.1. Find the page with the lowest 
referenced counter which has not 
presently been referenced: 

1.3.3.1.1. tmpP = Remove and Fetch the 
page with the lowest referenced 
counter. 

1.3.3.1.2. Place the page P instead of the 
removed page. 

1.3.3.1.3. Calculate L by Formula (1). 
1.3.3.1.4. Do Insertion of the removed 

page tmpP to level L. /* 
Recursion Invocation */  

1.3.3.2. If no such page has been found: 
1.3.3.2.1. Do Insertion of page P to level 

L+1. 
1.4. Else If page does not exist in the memory / 

storage: 
1.4.1. Return False. /* Recursion Termination */ 

 
 
 
Algorithm 2 
1. Update of an existing page (by the OS): 

1.1. If Read / Write action performed on the page: 
1.1.1. Set R bit to 1 (R = 1). 

1.2. If clock interrupt: 
1.2.1. Right Shift one bit to the page counter. 
1.2.2. Add the R bit to the leftmost bit of the page 

counter. 
1.2.3. newL = Calculate L by Formula (1). 
1.2.4. If newL ≠ L: 

1.2.4.1. tmpP = Remove and Fetch the page 
with the lowest referenced counter. 

1.2.4.2. Do Insertion of the removed page 
tmpP to level newL. 

 
 

It is worth noting that an implementation of the 
suggested algorithm with an update at every clock tick can 
cause a waste of precious CPU cycles. Also, current page 
replacement paradigms are based on a linear time 
complexity. Due to such practical concerns, Linux OS for 
example, implements Second Chance replacement algorithm 
with 2-Q [21] which neither requires repetitive calculation 
of page’s ages at every clock tick, nor has a high-complexity 
page replacement cost. Therefore, in order to enhance 
performances on the one hand without degrading them on 
the other hand, it is possible to use the algorithm as a 
secondary assisting memory management algorithm. Also, 
in order to minimize the overhead of this algorithm we 
suggest an update only every several cycles, which will be 
in proportion to the size of the working set of the process. 

D. Simulative Implementation of Memory-Aware Paging 
Algorithms 
In order to verify our hypothesis regarding the 

generalization needed to transfer the memory-oblivious 
Aging page replacement algorithm to be applicable to 
multiple levels of memory in a memory-aware fashion, we 
created a simulator that is able to run on any computer, and 
that is able to simulate a situation in which frames of 
memory are managed and mapped to specific levels of 
memory in a memory-aware or in a memory-oblivious 
fashion, based on the chosen algorithm. The simulator 
works in a uniform memory access (UMA) and its inputs 
can be selected either randomly or explicitly. In our 
benchmarks we used a strict model of random only inputs to 
verify our hypothesis. 

E. Algorithms Benchmark 
In order to verify our hypothesis regarding the 

beneficence of using the modified memory-aware Aging 
page replacement algorithm in heterogeneous main memory, 
and especially when this memory complex is a complex of 
standard RAM and different types of Storage Class Memory 
(SCM), we need to verify two main hypotheses:  

 
• First, that the memory-aware algorithm is resulting 

in an equally efficient Hit / Miss ratio as the 
memory-oblivious Aging algorithm when it 
implemented on heterogeneous main memory 
using the explicit cache mechanism. The explicit 
cache mechanism is the point of reference to the 
new algorithm because unlike the implicit cache 
mechanism it is not duplicating data to a lower 
level, and clearly keeps the different levels in the 
hierarchy independent. 

• Second, that the memory-aware algorithm is 
resulting in a significantly better access speed than 
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the memory-oblivious Aging algorithm when it is 
implemented on heterogeneous main memory 
using the explicit cache mechanism. This 
parameter should show that the optimization to the 
classic memory-oblivious Aging algorithm actually 
manages to transfer the different pages to their 
designated memory levels in the memory complex 
based on the proportionate frequency of their 
usage, and that this redirection of pages actually 
manages to move the more needed pages to a better 
access-time levels in the memory complex, and by 
that to achieve better total performances. 

 
Therefore, we tested and compared the two types of 

algorithms – the memory-aware Aging and the memory-
oblivious Aging – on two different platforms: 

 
1. A uniformed model of 3-level main memory which 

consist of a classic one-level memory (RAM only) 
and two extra memory levels with the same volume 
– for accurate comparability measurements – as the 
first level. Those two extra levels were simulating 
two different types of SCM devices: One which was 
2 times slower than the RAM, and the other which 
was 3 times slower than the RAM.  

2. A more realistic model of 3-level main memory 
which consist of a classic one-level memory (RAM 
only) and two extra memory levels with different 
volumes in an ascending volume hierarchy. Those 
two extra levels were simulating two different types 
of SCM devices: one which was 2 times slower but 
10 times larger than the RAM, and the other which 
was 3 times slower but 100 times larger than the 
RAM. 

 
Due to the fact that the results of the benchmarks on the 

two platforms were almost the same with a slight advantage 
to platform 2, we will present only the last results without 
underestimating the importance of the first ones. 

F. Results and Analysis 
As previously mentioned, the benchmark of the 

algorithms, using our simulation, has been performed on 
two different architectures, using several parameters. The 
following graphs show this benchmark result, the Hit / Miss 
ratio and the average memory level access, which will be 
presented as a function of the amount of page references (R) 
when the amount of frames in memory (F) and the amount 
of unique page indexes (I) are fixed. We ranged the amount 
of page references in two scales: The first scale ranged from 
10 till 100, and the second scale ranged from 1000 till 1 
million. The purpose of those two scales is to examine the 
performance of the simulation in normal usage scale and in 
intense HPC scale, respectively.  

In order to verify our hypothesis, we compared the new 
optimized memory-aware Aging algorithm with a memory-
oblivious Aging algorithm which is not aware of the 
multiple levels of the memory complex as we suggested in 
this paper. The most reasonable way to implement this 

algorithm was by using the same technique the exclusive 
cache mechanism manages the transferability of data 
between the different cache levels, i.e., by transferring data 
from one level to a lower one when the current level is full, 
and not to a specific level based on prior knowledge, as the 
mechanism of the optimized memory-aware Aging 
algorithm does.   

Therefore, we re-examined the Hit / Miss ratio as a 
function of the amount of page references (R) using 
platform 2 for both algorithms and discovered that the Hit / 
Miss ratio as a function of the amount of page references 
(Fig. 2) was finally almost the same, meaning that despite 
the fact that the optimized memory-aware Aging algorithm 
is transferring data to other levels even before the memory 
level is full, there is no negative impact on the Hit / Miss 
ratio. 

Furthermore, and most importantly, we examined the 
access speed to the memory complex – in this case by the 
average memory-level access – as a function of the amount 
of page references (R) (Fig. 3), and discovered that the 
memory-aware Aging algorithm is yielding about 75% 
improvement in the access speed over the memory-oblivious 
Aging algorithm, as evident from the lower average access 
levels in comparison to the memory-oblivious algorithm 
(Recall that the memory levels are ordered according to 
their speed, and lower levels are faster). This means that 
although the Hit / Miss ratio in both algorithms is almost the 
same in most cases, there is a clear advantage to the 
memory-aware Aging algorithm, as it resulting in much 
better performances than the memory-oblivious Aging 
algorithm using heterogeneous main memory. 

In addition to the previous results, we examined whether 
the optimization mechanism that we previously suggested 
and tested yields the same performances when pages are 
redirected to a different level in the memory complex than 
the level that Formula (1) suggests. Our hypothesis is that 
Formula (1) is the most appropriate formula, and using a 
different one would reduce performance. In order to verify 
this assumption, we examined the results of the memory-
aware Aging paging algorithm using platform 2 with 
intentional modification where there is no direct link 
between the amount of zeroes in the beginning of the page 
referenced bits to the level of memory that that page should 
be evicted to. 

In order to test the hypothesis that by forming a dynamic 
pyramid hierarchy of both page and memory necessity it 
was possible to get the best performances for a paging 
algorithm in a multi-level main memory, we modify the 
behaviour of the algorithm to select different levels rather 
than the correct direct levels. Specifically, if a page at level 
1 was directed towards level 2 in our original algorithm, it is 
actually redirected to level 3 and vice versa. Afterwards, we 
re-examined the Hit / Miss ratio of the modified algorithm 
as a function of the amount of page references (R) (Fig. 4) 
and discovered, unsurprisingly, that there was a loss in 
performance in comparison to our original algorithm. This 
loss can be explained by eviction of pages from the 
heterogeneous memory-complex although those pages were 
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actually more needed than the pages that ultimately 
remained in the memory. 

 

 
Figure 2.  Memory-Oblivious vs. Memory-Aware Hit / Miss ratio as 
function of the Amount of Page References in a Heterogeneous Main 

Memory (Platform 2).   

 
Figure 3.  Memory-Oblivious vs. Memory-Aware Average Memory-Level 
Access as a function of the Amount of Page References in a Heterogeneous 

Main Memory (Platform 2).  

 
Figure 4.  Optimal Memory-Aware vs. Suboptimal Memory-Aware Hit / 

Miss ratio as function of the Amount of Page References in a 
Heterogeneous Main Memory (Platform 2). 

IV. CONCLUSIONS AND FUTURE WORK 
Those benchmarks, results and analysis lead to the 

conclusion that it would be beneficial to use the memory-
aware Aging paging algorithm in a heterogeneous main 
memory which includes SCM devices in standard 
computing systems as well as in HPC clusters. 

This paper opens a number of prospective directions for 
future research. One immediate direction is to explore how 
the memory-aware Aging paging algorithm is reacting when 
the memory levels are not from the same class, and what 
exactly does that mean in aspects of cost, volume, memory-
access fashion and access of speed. Another direction is to 
understand how to optimize other memory management 
algorithms which are not paging algorithms for beneficial 
usage of the heterogeneous main memory. 

Finally, we also expect that in the near future the SCM 
invention will be a real and widespread technology, 
meaning that investigating actual SCM devices, applying 
our algorithm in managing them as part of a heterogeneous 
main memory, and comparing the results to the presented 
simulations would be a fertile ground for further research 
and development.  
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