
International Journal of Parallel Programming
https://doi.org/10.1007/s10766-019-00640-3

Source-to-Source Parallelization Compilers for Scientific
Shared-Memory Multi-core and Accelerated
Multiprocessing: Analysis, Pitfalls, Enhancement and
Potential

Re’em Harel1,2 · Idan Mosseri3,4 · Harel Levin4,5 · Lee-or Alon2,6 ·
Matan Rusanovsky2,3 · Gal Oren3,4

Received: 14 November 2018 / Accepted: 31 July 2019
© Springer Science+Business Media, LLC, part of Springer Nature 2019

Abstract
Parallelization schemes are essential in order to exploit the full benefits of multi-core
architectures, which have become widespread in recent years, especially for scientific
applications. In shared memory architectures, the most common parallelization API is
OpenMP. However, the introduction of correct and optimal OpenMP parallelization to
applications is not always a simple task, due to common parallel shared memory man-
agement pitfalls and architecture heterogeneity. To ease this process, many automatic
parallelization compilerswere created. In this paperwe focus on three source-to-source
compilers—AutoPar, Par4All and Cetus—which were found to be most suitable for
the task, point out their strengths and weaknesses, analyze their performances, inspect
their capabilities and suggest new paths for enhancement. We analyze and compare
the compilers’ performances over several different exemplary test cases, with each test
case pointing out different pitfalls, and suggest several new ways to overcome these
pitfalls, while yielding excellent results in practice. Moreover, we note that all of those
source-to-source parallelization compilers function in the limits of OpenMP 2.5—an
outdated version of the API which is no longer in optimal accordance with nowadays
complicated heterogeneous architectures. Therefore we suggest a path to exploit the
new features of OpenMP 4.5, as it provides new directives to fully utilize heteroge-
neous architectures, specifically ones that have a strong collaboration between CPUs
and GPGPUs, thus it outperforms previous results by an order of magnitude.

Keywords Parallel programming · Automatic parallelism · Cetus · AutoPar · Par4All

B Gal Oren
orenw@post.bgu.ac.il

Extended author information available on the last page of the article

123

http://crossmark.crossref.org/dialog/?doi=10.1007/s10766-019-00640-3&domain=pdf
http://orcid.org/0000-0002-8831-5423

International Journal of Parallel Programming

1 Introduction

1.1 Parallel Programming

Multi-core architectures have become very common in recent years [1]. These archi-
tectures are no longer exclusive to the HPC industry, and are now implemented inmost
personal computers, laptops, smart-phones and even wearable devices [2]. In order to
exploit the benefits of these architectures, programmingmethods should evolve from a
sequential to a parallel work fashion [3]. A parallel program is a program that is being
executed by several processing units simultaneously. Thus, dividing the program’s
workload between these processing units.

There are two main parallel programming models [4]: the shared memory model
and the distributed memory model.

1. In the shared memory model, several processing units can exchange data and com-
municate through a common address space. All processing units can read from
and write to this address space simultaneously, which may induce synchronization
problems. Most shared memory programs consist of a single process which man-
ages several threads, usually a single thread per core. A commonway to implement
this model is with OpenMP [5] usage. OpenMP is a pragma oriented library for
shared memory parallelization. Using OpenMP, the programmer can mark code
segments which will then be divided and executed concurrently between several
threads. Marking these code segments is done by wrapping them with compiler
directives (pragmas),which dictate how the parallelization should be implemented.
The programmer can control the parallel execution using OpenMP’s runtime sub-
routines. OpenMP’s environment variables may be used to customize runtime
specification such as scheduling and thread count, prior to the process execution.

2. In the distributed memory model, multiple processes coordinate in order to perform
a task. In this model, each process runs on a separate processing unit and has its
own individual memory. These processes can reside on the same machine or dis-
tributed over several different ones.An inter-process communication infrastructure
has to be established between these processes to share data and synchronize exe-
cution. A commonway to implement this model is with theMPI (Message Passing
Interface) standard [6,7]. MPI implementations provide an API with which a set
of processes can exchange data by sending and receiving both synchronous and
asynchronous messages. All implementations consist of the same set of routines
defined by the MPI standard. One common implementation of the MPI standard
is OpenMPI [8]. Note that these two models can be combined such that each MPI
process will implement several OpenMP threads. This model is called the Hybrid
Parallelization model.

In this paper we will focus on the shared memory model, mainly because most, if not
all automatic parallelization compilers tend to address this model, due to its relative
ease of implementation—as directives mostly keep the code structure as it is—unlike
other programming methods (such as MPI and CUDA [9]) which require a more
fundamental reconstruction of the desired code, thus creating a much harder problem
for automation.

123

International Journal of Parallel Programming

1.2 Automatic Parallelization Techniques

The intricate relationships between different memory structures in the program,
accompanied by the need to synchronize simultaneous reads and writes to these struc-
tures, and the ambition to distribute the workload evenly across the systems resources,
make it difficult to write a parallel program over the shared memory model. Simi-
larly, integrating parallelism into existing legacy codes may be tedious, as it requires a
comprehensive understanding of these codes and their intricacies, such as in AutOMP
compiler, which was designed for a particular kind of Fortran legacy code loops par-
allelization [10]. In common code scenarios, parallelizing legacy codes may entail
rewriting them entirely. These concerns led to the creation of several automatic par-
allelization compilers, which allow the programmer to focus on the application rather
than on its parallelization. To achieve their goal, these compilers first scan and parse
the code and turn it into an AST (Abstract Syntax Tree) [11]. Afterwards, they ana-
lyze this AST, find data dependencies and add parallel directives to code segments that
may benefit from parallelization accompanied by other optimizations. The analysis
and optimization steps may be repeated several times until convergence. Finally, the
AST is converted back to code in the original programming language. All of the above
mentioned process is done while maintaining both the program’s correctness and data
coherence implied by its data dependencies.

Over the years many automatic parallelization compilers were created based on
these techniques. Each have their own supported programming languages as well as
their own pros and cons. Table 1 briefly points out themostwell-established automatic-
parallelization compilers to this day.

In this study we overview and compare a subset of free up-to-date Compilers that
were found to be most suitable for scientific code parallelization. Among these we
included AutoPar (based on ROSE) [12–14], Par4All (based on PIPS) [15–17] and
Cetus [18,19]. We omit from our forward review the SUIF [20] and Polaris [21] com-
pilers since they are outdated and only operate on older versions of Fortran compilers.
The ICC [22] compiler is not included in our review since it is not a source to source
compiler.We omit S2P because it is a commercial software (as well as ICC). Pluto [23]

Table 1 Listing of auto-parallelization compilers

Criteria License Supported language Last updated

AutoPar (ROSE) Free C, C++ May, 2017

Par4All (PIPS) Free C, Fortran, CUDA, OpenCL May, 2015

Cetus Free C Feb, 2017

SUIF compiler Free C, Fortran 2001

ICC Proprietary C, Fortran, C++ Jan, 2017

Pluto Free C 2015

Polaris compiler Free Fortran 77 Unknown

S2P Proprietary C Unknown

123

International Journal of Parallel Programming

is not presented because it requires manual intervention, which makes it irrelevant for
legacy codes or large codes in general.

It’s worth stating that the reader should keep in mind there is no best compiler,
rather a preferable compiler for each case. The target of this paper is to conclude which
compilers are the most preferable ones based on their evaluation and performances
comparison.

2 RelatedWork

As previously mentioned, choosing the most suitable automatic parallelization com-
piler is not a simple task, and previous work was done in order to ease this decision
accordingly. Prema et al. [24] briefly introduced and compared the following auto-
matic parallelization compilers: Cetus, Par4All, Pluto, Parallware [25], ROSE, and
ICC. They discussed their different aspects of work fashion including dependence
analysis techniques, supported languages, frameworks etc. In their work, they showed
the speedup and points of failure of the compilers on ten NAS (Numerical Aerody-
namics Simulation) Parallel Benchmarks [26] using the Gprof tool [27]. In order to
deal with these points of failure, they proposed possible solutions that require manual
intervention. Furthermore, they concluded that the compilers which require no man-
ual intervention are Par4All and ICC; that the compilers that require minimal manual
intervention are Cetus and AutoPar; and that the compilers that failed to parallelize
the benchmark are Parallware and Pluto. Another work was done by Prema et al. [28],
which reviewed two automatic parallelization compilers: Cetus and Par4All. Several
study cases were introduced to analyze and evaluate both of these compilers’ per-
formances such as Matrix Multiplication. Execution time and speedup gained were
compared between the automatic parallelization results of Cetus and Par4All and a
manually OpenMP directed parallel program execution. The results showed that the
manually OpenMP directed parallel program produced the best execution time and
speedup. Furthermore, the authors concluded that Par4All and Cetus are not suited
for nested loops. Both Aditi Athavale et al. [29] and Prema et al. [28] reviewed Cetus
and Par4All. However, Aditi Athavale et al. [29] include the S2P compiler with a
detailed explanation of its key features in their comparison, while Cetus and Par4All
are explained briefly. The three compilers were tested with Perfectly Parallel NAS Par-
allel Benchmarks and Matrix Multiplication. The comparison criteria they used were
performance, scalability, memory, time complexity, and also parallelization overhead.
The authors concluded that although Par4All and Cetus managed to insert OpenMP
directives, additional effort was needed in order to achieve the best performance.

For our study, after a broad examination of the current available parallelization com-
pilers, we concluded that AutoPar, Par4All and Cetus are the most suitable compilers
for automatic parallelization of scientific codes, which usually hold a large amount
of arrays and array operations under multiple loops. The benefit of each compiler in
service to this goal is explained in detail, and a pros and cons list is included. Our case
study consists of Matrix Multiplication and NAS parallel benchmark, which are fun-
damental and representative scientific operation, and discussed thoroughly in Sect. 4.
The three compilers’ key features are shown by the table in Sect. 7.

123

International Journal of Parallel Programming

3 Compilers Specifications

3.1 AutoPar

AutoPar is a module within the ROSE compiler [30], which is under ongoing
development by Lawrence Livermore National Laboratory (LLNL). ROSE [13] is a
source-to-source compiler which is implemented in a modular fashion such that addi-
tional specialized translators may be constructed and added to it. ROSE’s front-end
parses the input code and then builds an abstract syntax-tree, which can be manipu-
latedby the translationmodules.ROSE’s IntermediateRepresentation (IR), alsonamed
SAGE III, is based upon SAGE II and uses Edison Design Group (EDG) front-end.
SAGE II was developed specifically to C and C++, which means that ROSE internally
supports Object Oriented Programming. ROSE currently supports C, C++, Fortran,
Java, Python and PHP programming languages.

AutoPar [12] is an open-source automatic parallelization compiler for C and C++,
included within ROSE. AutoPar can be used either to add new OpenMP directives
to a serial code or to check the correctness of existing ones in a given parallel code.
Although AutoPar can be used in an unmanaged manner, there is some information
which is usually hard to automatically extract from the code such as aliases andpossible
side effects of functions. This information is crucial for optimizing the parallelization
performances of the code. For these cases, the programmer may want to provide
AutoPar with an annotation file describing the code’s features.

AutoPar Pros and Cons

+ Inherently suitable for OOP.
+ Handles nested loops.
+ Verifies existing OpenMP directives.
+ Can be directed to add OpenMP directives regardless of errors.
+ Modifications are accompanied by clear explanation and reasoning in its

output.

- Requires programmer intervention to handle function side-effects, classes
etc. (via annotation file).

- Lacks the ability to tune the parallelization directives for each level in the
nested loop.

- May add incorrectOpenMPdirectiveswhengiven the "No-aliasing" option
(for further explanation see Sect. 4.2.2).

3.2 Par4All

Par4All [15] is an open-source compilation frameworkwhich can be utilized for analy-
sis and manipulation of C and Fortran programs. Par4All was developed by SILKAN,
MINES ParisTech and Institute Télécom as a merge of some open-source develop-
ment projects. The development of Par4All was shut-down by 2015. It specializes in

123

International Journal of Parallel Programming

inter-procedural analysis which can be used to understand data dependencies within
the code and to validate correctness of code manipulations. This framework may also
be used as a way to enforce coding standards, to ease the process of debugging, and to
make code more maintainable. Par4All may be useful for migrating serial programs
to both multi-core processors and GPGPUs [31]. Within a single command, Par4All
automatically transforms C and Fortran sequential programs to parallel ones. It offers
code execution optimization on multi-core and many-core architectures regardless of
a particular programming language. Par4All supports CUDA paradigms.

Par4All includes some of PIPS [16] commands. PIPS is a source-to-source compiler
that was built for scientific and signal processing applications. PIPS was developed
in 1988 by the same teams from MINES ParisTech, CEA-DAM, Southampton Uni-
versity, Télécom Bretagne, Télécom SudParis, SRU (Slippery Rock University), RPI
(Rensselaer Polytechnic Institute) and ENS Cachan.

Par4All Pros and Cons

+ Automatically analyzes function side effects and pointer aliasing.
+ Suitable for GPUs.
+ Supports many data types.
+ Supports Fortran, thus making it more suitable for scientific legacy codes.

- May change the code structure.
- Unused functions will not be parallelized.

3.3 Cetus

Cetus [18] is a compiler infrastructure for the source-to-source transformation of
software programs. Cetus was developed by ParaMount research group at Purdue
University. It currently supports C programs. Cetus compiler includes data dependent
analysis, pointer alias analysis, array privatization, reduction recognition etc. (for
further reading please refer to [32] or see below in Sect. 4). Cetus transformation
phases include induction variable substitution pass, loop dependent analysis, loop
parallelizer based on some of the compiler passes and more.

Automatic parallelization capability is an integral part of the Cetus compiler itself,
unlike ROSE and PIPS—in which the automatic parallelization function is an external
part of the compiler. Cetus is written in Java, and it contains a graphical user interface
(GUI) and a client-server model, allowing users to transform sequential C code to
parallel one via the server. Moreover, the client-server model gives the opportunity for
non-Linux users to run Cetus automatic parallelization compiler. Cetus adds a condi-
tion which ensures that parallelization is done only for loops above 10,000 iterations,
thus preventing parallelization overhead where a sequential run is enough. In cases
of nested loop, the number of iterations of each loop segment will also include the
number of iterations of its inner loops.

123

International Journal of Parallel Programming

Cetus Pros and Cons

+ Handles nested loops.
+ Provides cross-platform interface.
+ Verifies existing OpenMP directives.
+ Modifications are accompanied by clear explanation and reasoning in its

output.
+ Loop size dependent parallelization.

- Adds Cetus’s pragmas which create excess code.
- May create reduction clauses that are unknown for standard compilers.
- Does not insert OpenMP directives to loops that contain function calls.

4 Comparison

In this section we present relevant definitions and criteria for the automatic paral-
lelization compilers. We then compare the three compilers’ outcomes, and point to the
strengths and weaknesses of each compiler. Lastly, we present a runtime analysis of
the parallelized code segments using different suitable hardware platforms.

4.1 Criteria and Terminology

Relevant definitions and criteria for automatic parallelization compilers comparison
include—but are not limited to—the following:

– Definitions:

– Pointer Aliasing Refers to the situation where the same memory location can
be accessed using multiple different names (i.e pointers).

– Function Side Effect A function is said to have a side effect if it modifies
addresses accessible outside its scope (i.e has any interaction with the rest of
the program besides a return value).

– Array Privatization The act of declaring an array as a private variable in a
parallel section.

– Loop Unrolling/Unwinding A loop transformation technique that attempts to
optimize a program’s execution speed at the expense of its binary size (excess
code). An example to this optimization is shown in loop unroll test (Listing 7)

– Reduction Clause An OpenMP clause that performs a reduction operator on a
variable or an array.

– Criteria:

– No-Aliasing Option A flag notifying the source-to-source compiler that there
are no pointer aliasing in the code.

– Supported Language The set of programing languages on which the source-
to-source compilers can operate.

123

International Journal of Parallel Programming

– Array Reduction/PrivatizationHowdoes the source-to-source compiler behave
when a parallel directive can only be added with an array reduction clause or
with an array declared as private?

– Loop Unroll Support Will the source-to-source compiler insert OpenMP direc-
tives to unrolled loops?

– Double Check Alias Dependence Does the source-to-source compiler check
for dependencies other than pointer aliasing when the No-Aliasing option is
turned on?

– Function Call Support Will the source-to-source compiler insert OpenMP
directives to loops containing function calls with/without side effects?

– Nested Parallelism How does the source-to-source compiler behave on nested
loops?

– OOP CompatibleDoes the source-to-source compiler support Object Oriented
Programming languages and concepts?

4.2 Test-Cases

Several input source codes were made in order to show the differences between the
output files generated byAutoPar, Par4All and Cetus, in order to both test and compare
their capabilities. The basic source codes are Matrix Vector Multiplication and Matrix
Multiplication [33], the latter’s source code is presented below. Several variants of
these problems were created, with each variant pointing to a different parallel shared
memory management pitfall/obstacle for the purpose of the compilers’ dependence
analysis. The Matrix Vector Multiplication source code was not included due to the
similarity in the OpenMP directives to the Matrix Multiplication source code.

123

International Journal of Parallel Programming

4.2.1 Nested Loops and Array Reduction

The test on Listing 1 contains a nested loop which implements a simple naïve Matrix
Multiplication calculation.While Par4All (Listing 2) insertedOpenMPdirective solely
to the outermost loop, AutoPar (Listing 3) was able to insert OpenMP directives to
the two outermost loops, and Cetus (Listing 4) managed to insert OpenMP directives
to all of the loops.

4.2.2 Pointer Aliasing

Listing 5 contains a pointer dereference test-case. This specific test-case caused Cetus
to step into an internal error. When given the No-Aliasing option, AutoPar ignored all
data dependencies and inserted an incorrect OpenMP directive to the innermost loop
(Listing 6). Par4All did not manage to insert any OpenMP directive (even with the
No-Aliasing option). However, if one changes the arrays from a static allocation to a
dynamic one, i.e. a pointer to a matrix, Par4All will insert OpenMP directive when
given the No-Aliasing option. Since Cetus and Par4All did not manage to insert the
directives in both allocation modes, their codes are not presented.

123

International Journal of Parallel Programming

4.2.3 Loop Unrolling

In Listing 7 we created a version of the original mat_mul function where in each
iteration we changed four consequent array cells. AutoPar did not manage to insert any
OpenMP directives, thus the code it has generated is not included. Par4All parallelized
the outermost loop as before and managed to insert the correct directive, therefore the
code generated by it is not presented for convenience reasons. As before, Cetus added
OpenMP directives to all three loops. However, Cetus’s output for the innermost loop
(Listing 8) is invalid since it contains a reduction clause for multiple array cells. This
kind of reduction can not be compiled - as far as is known—by any compiler. On the
runtime analysis section we omitted this invalid OpenMP directive.

123

International Journal of Parallel Programming

4.2.4 Function Calls

On another test-case (Listing 9), the innermost instruction was isolated into a function
and replaced with a function call. Using this code arrangement, the matrix multiplica-
tion contains a function-call side effect. For this test-case, AutoPar couldn’t parallelize
the codewithout being fedwith an annotation file. Cetus always assumes that function-
calls will cause unexpected data manipulations and tries to evade these side-effects by
avoiding any OpenMP directives. Meanwhile, Par4All handles function side-effects
automatically and manages to insert the OpenMP directive to the outermost loop as
before (Listing 10). Since AutoPar and Cetus did not insert OpenMP directives, their
code is not presented.

4.3 Runtime Analysis

All the above-mentioned test-cases were compiled using Intel(R) C Intel(R) 64 Com-
piler for applications running on Intel(R) 64, Version 18.0.1.163 Build 20171018
using internal optimizations (i.e. -O3), and executed on a machine with two Intel(R)
Xeon(R) CPU E5-2683 v4 process units with 16 cores each. We also executed these
tests on an Intel(R) Xeon-Phi co-processor 5100 series (rev 11) in native mode. As far
as we know, this kind of performance comparison of the of automatic parallelization
compilers over Xeon-Phi co-processors is the first of its kind.

Figure 1 compares the runtime of each output file generated by the three automatic
parallelization compilers (AutoPar, Par4All, Cetus) and the original sequential source
code. The functions (y-axis) are the code segments described in Sect. 4. As seen
in 1, Par4All’s overall performance is the best. This is because AutoPar and Cetus
generated OpenMP directives in the inner-loops which creates a slight overhead. Cetus
inserts a reduction clause on an array which also creates overhead. However, one can
disable this feature and avoid inserting a reduction clause on arrays. AutoPar has the
worst performance in _loop_unroll because the compiler did not insert any OpenMP
directives on loops that have been manually unrolled.

Figure 2a compares the execution time of the parallelized and serial mat_mul test-
case on Xeon processors (represented by circle markers on the figure) and Xeon-Phi

123

International Journal of Parallel Programming

mat_mul _function_calls _loop_unroll _pointer_alias

0

1

2

3

4

Function name

E
xe

cu
tio

n
T

im
e

(s
ec

)

Matrix dimension = 1,000x1,000x1,000

Serial
AutoPar
Par4All
Cetus

Fig. 1 Functions execution time generated by the three compilers and serial execution

0 1,000 2,000 3,000 4,000 5,000
0.001

0.01

0.1

1

10

100

1,000

1

10

100

Problem Size

E
xe

cu
ti

on
T

im
e

(s
ec

)

Serial
AutoPar
Par4All
Cetus
Xeon

Xeon-Phi

(a) mat_mul execution time with
different problem sizes in log-scale.

0 1,000 2,000 3,000 4,000 5,000

20

22

24

26

28

30

32

Problem Size

Sp
ee

du
p

AutoPar
Par4All
Cetus

Optimal speedup

(b)mat_mul speedup with different
problem sizes on Xeon

Fig. 2 Execution time and speedup comparison on Xeon and Xeon-Phi

co processors (represented by square markers on the figure) with the "-O3" option. As
onemay notice, the performance of the parallel execution onMIC architecture is worse
than on x86_64. Figure 2b compares the speedup gained by the parallel execution on
Xeon to the serial execution, the results scale well as they are on average above x25
while the optimum is x32 which is the number of threads.

The next Fig. 3 compares the speedup gain from executing the parallel source
codes on a Xeon-Phi co-processor with the options "-O3" and "-O0". The reason for
compiling with the "-O0" option is to demonstrate the source-to-source compilers’
capabilities without any source-to-machine language compiler optimization. The dif-
ference between the "-O3" and "-O0" and other options, is further discussed in Chae

123

International Journal of Parallel Programming

500 1,000 1,500 2,000 2,500 3,000 3,500 4,000 4,500 5,000
1

1.5

2

2.5

3

3.5

4

4.5

5

Problem Size

Sp
ee

du
p

AutoPar O3
Par4All O3
Cetus O3

AutoPar O0
Par4All O0
Cetus O0

Fig. 3 mat_mul speedup on Intel Xeon-Phi compared to serial run (on Intel Xeon) with both -O3 and -O0
optimizations

Jubb paper [34]. The speedup gainwith the option "-O3" is lower than the option "-O0",
this is because the option "-O3" improves the execution time of the serial runmore that
it improves the parallel. The performance imbalance with the option "-O0" happens
mainly because the overhead that is caused by creating many threads for each loop,
outweighs the benefit we gain from the parallelization itself. Once the benefit of paral-
lelizing the computation over many threads overcomes the overhead of the creation of
a thread itself, we can see an increase in speedup (which occurs when N > 3000). The
results from Figs. 2a and 3 imply that one should not solely rely on automatic paral-
lelization compilers when optimizing code for execution on Xeon-Phi. Previous work
showed that efficient optimization for nativeMIC involves vectorization [35], tailoring
of the perfect algorithm [36] and careful instructions arrangement [37]. These opti-
mizations are yet beyond the capabilities of the automatic parallelization compilers.

To further understand the abilities of the compilers to maximize performance both
on co-processors and processors, we present a Vector Matrix Multiplication test case.
In this test we balanced the problem size with the number of repetitions to allow a
fixed number of floating point operations in all tests. The focus of this test is to show
the impact of memory usage over the L1, L2 and L3 cache sizes while maintaining
the same workload operation-wise. The first execution size contains one matrix size
of 240 elements which sums to 233 kB, while our L1 cache is 64 kB and L2 cache size
is 256 kB. The second execution size contains 3000 elements which sums up to 3604
kB, while our L3 cache is 41 mB. The third execution size contains 15,180 elements
which sums to 1 gB. The results show in Fig. 4 that the fastest execution time for Xeon
is with 3000 elements. This is because the number of cache misses is the smallest (the
problem’s size is smaller than the L3 cache size). We can see that for 15,180 elements
test case the Xeon-Phi outperformed the Xeon, which can indicate that Xeon-Phi is
beneficial for larger inputs.

5 Accelerators and Co-processors

In this section we test Par4All’s ability to transform C code to CUDA for GPUs. To
better suite this study case, we slightly modified the previous matrix multiplication
code see Listing 11.

123

International Journal of Parallel Programming

240 3000 15180

50

100

250

500

1,000

2,000

Problem Size

E
xe

cu
ti

on
T

im
e

(s
ec

)

Matrix Vector Multiplication scaling

AutoPar
Par4All
Cetus

AutoPar Xeon-Phi
Par4All Xeon-Phi
Cetus Xeon-Phi

Fig. 4 Functions execution time generated by the three compilers and serial execution

– The new matrix is now allocated as a N 2 dimensional vector of integers instead
of a N dimensional vector of pointers to N dimensional vectors of integers.

– We replaced the dynamic parameter n that holds the dimension of the matrix, with
a static definition of N known at compilation time (i.e #define).

– We assume the matrix B is transposed, which allows us to access it by row order,
as is the access to the matrix A.

The above changes are required for Par4all to support the code transformation toCUDA
and to enable better compiler optimization and memory management. Par4All’s GPU
accelerator support relies on an API called P4A_ACCEL that provides an encapsula-
tion of CUDA’s API. Data-parallel loops are automatically transformed into CUDA
kernels that are executed on GPUs. Ad hoc communications between the host memory
and the GPU memory are generated to enable kernel execution. We test the Par4All’s
CUDA output on a GPU against Par4Alls OpenMP output on a Xeon processor and a
Xeon-Phi Co-processor. The following architectures were used to test this study case:

– GPU NVIDIA(R) Tesla(R) V100-PCIE-32GB.
– Xeon Intel(R) Xeon(R) CPU E5-2683 v4 2 process units with 16 cores each.
– Xeon-Phi Intel(R) Xeon-Phi co-processor 5100 series (rev 11).

The native compilation scheme is to firstly allocate the desired space on theGPU for
each parallel loop nest, transfer the computation data to the GPU and finally launch the
kernel and copy back the results from the GPU. Par4Alls output for GPU accelerators
is shown in Listing 12. Par4All’s code transformation to OpenMP remains the same

123

International Journal of Parallel Programming

as before see Listing 2. The runtime and speedup results of these tests are shown in
Fig. 5.

The results below show a great differentiation between the different platforms.
Although the GPU V100 is about seven-eight times stronger in terms of flop/s than
the Xeon-Phi KNC, the KNC outperformed the V100. We can also see that since
the automatic code parallelization cannot transform the code into a vectorized code,
performances did not improve in comparison to the Xeon processor, and were even
worsen over an increase of thematrix size.We can also notice that theXeon processor’s
speedups stay steady as we increase the matrix size, but they are worsen in the Xeon-
Phi in a semi-linear fashion.

Therefore, we conclude that though these source-to-source automatic paralleliza-
tion compilers can achieve improvements to shared-memory platforms, they still
cannot achieve the same kind of improvements to more complicated architectures
such as accelerators or co-processors. This is mostly due to the lack of vectorization
support by these compilers. These architectures are still required to be programmed in
an ad-hoc fashion to a specific problem by an expert programmer that can take many
parameters into account as parallelization is being performed.

123

International Journal of Parallel Programming

0 0.5 1 1.5 2

104

0.01

1

100

10,000

Problem Size

E
xe

cu
ti

on
T

im
e

(s
ec

)
Xeon

Xeon-Phi
GPU

0 0.5 1 1.5 2

104

0

20

40

Problem Size

Sp
ee

du
p

Xeon
Xeon-Phi

GPU

Fig. 5 Execution time and speedup comparison of Par4All output on Xeon and Xeon-Phi and GPU

6 NAS Parallel Benchmark

To further evaluate the compilers capabilities, we introduce a more practical test case.
The Numerical Aerodynamics Simulations (NAS) Parallel Benchmarks [26], devel-
oped and maintained by NASA, are a group of applications created to evaluate the
performance of HPCs. The NAS Parallel Benchmarks include ten different bench-
marks [38]. The benchmarks that were included to evaluate the compilers are Block
Tri-diagonal solver (BT), Conjugate Gradient (CG), Embarrassingly Parallel (EP),
Lower–Upper Gauss–Seidel solver (LU), Multi-Grid (MG), Scalar Penta-diagonal
solver (SP) and Unstructured Adaptive mesh (UA). The benchmarks Fourier Trans-
form (FT) and Integer Sort (IS) were excluded from this study due to the inability of
AutoPar and Par4All to process them. Each of the benchmarks was processed by the
three compilers and compiled using Intel(R) C Intel(R) 64 Compiler for applications
running on Intel(R) 64, Version 18.0.1.163 Build 20171018 with a fixed class size
defined by Class=C.2

6.1 NAS Results

AutoPar Failed to gain any speedup in most of the benchmarks (BT, LU, MG, SP,
EP). This can be explained by the insertion of OpenMP directives to computationally
small loops, such as Listing 13 and the insertion of OpenMP directives in a nested
loop manner, such as Listing 14.

2 Source code of relevant sections can be found at: github.com/reemharel22/AutomaticParalleli-
zation_N AS

123

International Journal of Parallel Programming

Par4All Unlike AutoPar, Par4All did not insert multiple directives in nested loops.
However, Par4All did insert many of its directives on the innermost loops and on
computationally small loops Listing 15.

Cetus As mentioned above, Cetus ensures that the number of loop iterations is
above ten thousand, combining this feature with the option to parallelize only the
outermost-parallelizable loop in the loop nest explains the speedup gained in the CG,
EP, LU, MG, SP benchmarks. Although this feature was found to be powerful in CG,
EP, LU, MG, SP benchmarks, this is not the case in UA and BT benchmark, in which
it was found to be insufficient in cases of a single loop such as Listing 16. UA and BT
benchmark with the removed directives (single loops) speedup results are shown in
Fig. 6b.

In order to show a more realistic scenario which involves the compilers’ output and
minimal human intervention. The unnecessary OpenMP directives, such as Listing 14,
created by the three compilers weremanually removed. Figure 6a presents the com-
pilers’ speedup compared to the serial run of the benchmarks whereas Fig. 6b and 6c
compare the compilers’ performance after removing the unnecessary directives to the
serial run and to the compilers’ performance with those directives respectively. We
can see that by removing the unnecessary OpenMP directive we gain speedup in most
test-cases. These results imply that although the compilers results performed worse
than the serial execution in some cases, we can still gain speedup with minimal human

123

International Journal of Parallel Programming

BT CG EP LU MG SP UA

1
5

10

15

20
Sp

ee
du

p
AutoPar
Par4All
Cetus

(a) Speedup gained from the compilers alone on the tested benchmarks compared to serial execution.

BT CG EP LU MG SP UA

1
5

10

15

20

Sp
ee

du
p

(b) Speedup gained from removing the unnecessary OpenMP directives compared to serial execution.

BT CG EP LU MG SP UA

1
10

20

30

40

Sp
ee

du
p

(c) Speedup gained from removing the unnecessary OpenMP directives compared to non-removal.

Fig. 6 NAS benchmark results

intervention by removing redundant directives. We can see that the compiler with the
best results is Cetus. As one can see CG and EP benchmarks are the exceptions that
disprove the rule, meaning without human intervention we still achieve the compilers’
maximal speedup.

6.2 OpenMP NAS Benchmark

In order to maximize the compilers’ performance on the NAS benchmark—and by
that to fully understand the parallelization compilers performances—we introduced
AutoPar, Par4All and Cetus to a parallel-suitable NAS benchmark [39], which was
code-designed to achieve peak performances using OpenMP. The OpenMP NAS
benchmarks tackle the same NAS serial benchmark physical and mathematical prob-
lems, with differences in the code structure, such as including OpenMP directives in
the most suitable spots, pre-declaring global variables as shared or private if neces-
sary, changing a loop to be more suitable for a reduction clause and so forth. The
notion for testing the compilers on a code that was re-designed to be more suitable for
shared-memory parallel run is obvious, as serial code not always enables achieving
peak performances without the necessary adaptations. Therefore, the compilers should
yield better performances on the NAS parallel-suitable codes. However, the perfor-
mances results were almost identical to the results of the compilers with the serial
benchmark. The following Fig. 7 compares the compilers’ speedup on the OpenMP

123

International Journal of Parallel Programming

BT CG EP LU MG SP UA

0

0.2

0.4

0.6

0.8
Sp

ee
du

p
AutoPar
Par4All
Cetus

Fig. 7 Speedup gained from removing the unnecessary OpenMP directives compared to the man-OpenMP
code

benchmark, after removing unnecessary OpenMP directives, as was discussed above
in Sect. 6.1, to the OpenMP benchmark (T ool Runtime

OpenM P Runtime).
Although the code is different and more suitable for shared-memory paralleliza-

tion, the compilers failed to take advantage of this parallelization adaptation in the
code structure and did not gain any significant performance improvements. A com-
prehensive analysis of the causes to the gap between the original OpenMP code to the
compiler’s OpenMP code can be found in the next section.

6.3 The Gap Between and Pitfalls of the Compilers

As known, the NAS OpenMP parallel benchmark contains many nested loops with an
OpenMPdirective on the outermost loop,which ensuresminimal overhead from thread
creation while maximizing the workload of each thread (for example, Listing 17). In
someof these cases, the compilers failed to insert anOpenMPdirective to the outermost
loop or insert an OpenMP directive at all, as shown in Listing 16. The insertion of
the directives into the inner loops resulted in smaller workloads for each thread, and
therefore it increased the overhead penalty to the total runtime. The reasons for the
gap between the original OpenMP parallelized code and the compilers’ OpenMP code
and between the compilers themselves, can be summarized in the following points:

Internal Logic of the CodeTheOpenMPparallel benchmark contains code segments
that are wrapped within a parallel region directive. Inside the parallel region, a team of
threads is created once, and then is being executed on the same code segment. This is
helpful in cases of consecutive loops that can be parallelized at once, thus minimizing
the overhead caused by creating threads over and over again. Furthermore, this one-
time-thread-creating parallel region allows the usage of the nowait clause, an example
of this is shown in Listing 18. Another example is when there is an assignment of
individual work for each individual thread, as shown in Listing 19. Cases like Listing
18 and Listing 19 are hard to predict without knowing the internal logic of the code,
which is the reason for the failure of the compilers to insert an OpenMP directive at all.
The lack of the internal logic of the code might cause additional failures in producing
OpenMP directives due to the difficulty of predicting or understanding the pattern of
the code. For example, in Listing 20 the compilers can’t predict the values of the array
rowstr thus, the compilers must assume the worst case which is the values of the array
contain overlapping range.

Array Privatization Many of the OpenMP directives in the NAS OpenMP code
include an array privatization. As mentioned, unlike Cetus, AutoPar and Par4All sup-

123

International Journal of Parallel Programming

port only scalar variable privatization and not array privatization. Thus, AutoPar and
Par4All failed to insert OpenMP directives into for-loops that can be parallelized with
the array privatization option while Cetus managed to do so successfully. Thanks to
this feature, Cetus managed to produces the best results among the three compilers in
most of the NAS benchmarks (Fig 6a, 7). The only exception test case is the CG test
case, as the original CG OpenMP code did not include array privatization options.

Function Calls Although Cetus and Par4All analyze function side effects automat-
ically, in the NAS benchmark the analysis of function side effects were found to be
insufficient. To analyze function side effects, the compiler needs the source code of the
function and not the compiled form of the function at the compiler’s processing stage.
This is due to the fact that these compilers are source-to-source compilers. Even if the
function’s source code is provided to the compiler, in some cases it fails to analyze
the side effect correctly, thus fails to insert an OpenMP directive entirely.

123

International Journal of Parallel Programming

6.4 Overcoming the Pitfalls in The Limits of OpenMP 2.5

In order to overcome the pitfalls that were encountered by the compilers, and to
minimize the gap between the original OpenMP code to the code produced by the
compilers, we suggest several changes in the original OpenMP code that will help
the compilers produce better results, i.e additional directives to additional loops, with
minimal human intervention. However, there are some pitfalls that the presented com-
pilers cannot overcome due to their inability to produce the directive such as defining
a parallel region, the nowait directive, array privatization option (although in specific
cases loop transformations can be applied to eradicate the array or, if possible, by
declaring the array inside the loop thus, implicitly declaring the array as private). It
is worth noting that the changes we suggest can be used for the general case of these
pitfalls and not only for the NAS benchmark.

Array Privatization Although Cetus can produce an OpenMP directive with array
privatization, it is still difficult to predict an array privatization case. Thus, if one
has prior knowledge whether the loop can be parallelized with the array privatization
option, the array can be declared inside the loop. Thus, implicitly declaring the array as
a private array. By implicitly declaring the array as private, we also overcome Par4All’s
and AutoPar’s pitfall - in which these compilers cannot produce an array privatization
option at all. An example of producing an OpenMP directive by implicitly declaring
an array as a private is shown in Listing 21.

Function Calls As mentioned, analyzing function side effects can be difficult and
not all the compilers support this option. In order to overcome the function side effect
pitfall, it might be helpful to ’inline’ the function’s source code to the loop itself. As
seen in Listing 22, by inserting the function’s source code Cetus managed to produce
the correct OpenMP directive.

123

International Journal of Parallel Programming

BT SP MG

0.2
0.4
0.6
0.8

1
Sp

ee
du

p
Par4All after

Par4All before
Cetus after

Cetus before

Fig. 8 Speedup gained before and after applying the two techniques, compared to the humanmade OpenMP
code

In order to test the techniques discussed above, we apply the two techniques dis-
cussed above on three NAS benchmarks—BT, SP and MG. We note that the targeted
functions were chosen by identifying them as their high execution time with the
scalasca tool [40] and the work done by Prema et al. [24]. We targeted the three
source codes in BT benchmark—x_solve, y_solve, z_solve due to their high execution
time. By applying the two techniques while maintaining the correctness of the code,
Cetus managed to insert the correct and optimal directive in the new source codes
while Par4All and AutoPar failed to produce the same result due to long analyzing
time which resulted in the compilers failing in mid-process. A similar procedure was
done for the two other benchmarks—SP and MG. In SP, Par4All and Cetus managed
to insert the correct and optimal directive while AutoPar failed to produce the same
directive. In MG applying the techniques did not help Cetus to produce better results,
because the compiler already inserted the correct directives and avoided these pit-
falls. Nonetheless, Par4All did overcome the pitfalls and managed to insert additional
OpenMP directives while AutoPar failed to overcome the pitfalls. Figure 8 presents the
speedup of the compilers compared to the human-made OpenMP code. The bold bars
represent the speedup gained after applying the discussed techniques, while the striped
bars represent the speedup gained before applying these techniques (as in Fig. 7). As
one can notice, Cetus’s BT execution time is shorter than the human’s. This is due
to the minimization of function calls in the new source code, which resulted in faster
execution time.

7 Conclusions and FutureWork

7.1 Conclusions

In this paper, we first described the need for parallelism in modern architectures and
the difficulty of integrating it in existing codes. By that, we stressed the need for
automatic parallelization compilers. We then presented the current automatic paral-
lelization compilers and briefly discussed their history, work-fashion and pros and
cons. Afterward, we chose three compilers which we found to be most suitable for
parallelization of scientific codes. We also presented several test-cases, with different
variations such as the Matrix Multiplication and the NAS benchmark, and presented
the relevant output files generated by the three compilers. We also suggested some
changes to the code base to help the three compilers insert more OpenMP directives.
Finally, the compilers were compared based on their performance in different test-

123

International Journal of Parallel Programming

Table 2 Table summary of the three compilers key features

Feature AutoPar (ROSE) Par4All (PIPS) Cetus

Loop unrolling No Yes Yes

Supported language C, C++ C, Fortran, CUDA C

"No-aliasing" option Yes Yes Yes

Check alias dependence No Yes Yes

Reduction clauses Yes Yes Yes

Array reduction/privatization No No Yes

Nested loops Yes No Yes

Function side effect Annotation required Yes Yes

OOP compatible Yes No No

Development status Yes No Yes

cases on three different suitable hardware architectures. We summarize the compilers’
work fashion as follows:

1. AutoPar’s annotation file is a powerful compiler, especially for function side effect,
structures and object-oriented programming, which makes it more suitable for
bigger projects or OOP-based projects. However, AutoPar’s No-Aliasing option
is dangerous and should be used with caution.

2. Although Par4All is somewhat out-dated, it is still a forceful compiler that can
handle most of the cases automatically with minimal user intervention. Par4All
also supports Fortran, thus making it more suitable for scientific legacy codes.

3. Cetus can provide a great service not only toLinux users but also for other operating
system users via their GUI and client-server model. Cetus is able to generate
reduction clauses on arrays as seen in Listing 8, though this reduction clause may
be invalid, resulting in a crucial problem to compile the code.

The following table summarizes the three compilers by pointing out their key features
(Table 2).

7.2 FutureWork

7.2.1 Adapt to OpenMP 4.5

The three automatic parallelization compilers produce OpenMP directives that uti-
lize only the features of version 2.5. However, over the years OpenMP evolved from
a simple API that is suited for regular for-loops to an API that includes hundreds
of different directives that support many different architectures. These new direc-
tives, specifically the ones included since OpenMP version 4.0 [41], attempt to utilize
complicated architectures such as NUMA, co-processors, and accelerators. Thus, the
compilers can greatly benefit and enhance their performance by introducing the new
OpenMP features to their base code.

A new directive added in OpenMP 4.0 is the SIMD directive which allows the
execution of the same operation on multiple data elements simultaneously. Using this

123

International Journal of Parallel Programming

directive, the processing time of the operation can be potentially reduced by a factor
of the vector length. The compilers can greatly benefit from this directive since it can
be added regardless of any other OpenMP directive, i.e it can be added to low-iteration
loops (without the parallel-for directive) and still gain speedup as vector units are an
integral part of new CPUs and obviously of co-processors and accelerators.

Although compilers can identify and execute SIMD loops themselves, they still
may encounter challenges that will cause them to not automatically execute the SIMD
directive such as imprecise dependence information, conditional execution, calls to
functions, loop bounds that are not always a multiple of the vector length etc [42,43].
To overcome these challenges, the manual SIMD directive was introduced, allowing
the compilers to take advantage of this directive by helping (or forcing) the compiler
to execute the SIMD instruction.

Another directive in which the compilers can greatly benefit from is the offload
directive. With the offload directive, the specified code can be easily offloaded to an
accelerator or to a co-processor in cases where the SIMD code is intense, thus mak-
ing the compiler produce codes that are suited for heterogeneous architectures. As
seen in Sect. 5 Par4All can produce a code suited for accelerators in CUDA-Nvidia.
Since OpenMP 4.0 the directives suited for accelerators (CUDA) can be replaced by
simple OpenMP directives, thus making it easier to identify and insert codes suited
for accelerators. This also allows the parallelization compilers to be familiar with
only OpenMP directives. Introducing OpenMP offload also allows combining exist-
ing OpenMP directives such as the SIMD instruction, reduction clause, etc with the
directive itself. The offload instruction—copying the memory and the code to the
accelerator, executing, copying the memory back to the host—is an expensive task.
Therefore, it is advisable to include with the offload some sort of if-clause (which
Cetus already includes for parallel-for directives), thus avoiding the overhead caused
by offloading in some cases. In addition, the compiler can easily detect which param-
eters should be copied to the device and which should be copied and returned from the
device, and put the to and tofrom clauses respectively. Thus, avoiding the overhead of
redundant copies from the device.

123

International Journal of Parallel Programming

1
12

8
25

6

51
2

1,
02

4

2,
04

8

4,
09

6

0

200

400

600

R

E
xe

cu
ti

on
T

im
e

(s
ec

)

OpenMP 2.5 parallelization (Listing 24)
OpenMP 4.5 parallelization (Listing 25)

Fig. 9 Execution time of the programs presented in Listing 24 and in Listing 25

Listing 23 shows a serial code example in which an adaptation to OpenMP 4.5
directives can greatly elevate the entire performances. Currently, applying the par-
allelizators will only create a (i) #pragma omp parallel for between lines 1 and 2,
and between 16 and 17, achieving simple loop parallelization (Listing 24 by Cetus,
for example). However, introducing SIMD can create in this case a (ii) #pragma
omp for simd between line 16 and line 17 instead, and by that to obtain much bet-
ter performances. In cases where the integer N is big enough and/or the amount
of vectored operations is substantial, one can offload the code to an available co-
processor/accelerator using (iii) #pragma omp target teams distribute parallel for
simd instead of (ii).

Listing 25 demonstrates (with the needed clarity for presentation) how the code in
listing 24 would look like if the compilers have implemented OpenMP 4.5 directives.
In order to demonstrate the potentially gained performances by the introduction of
OpenMP 4.5 to the compilers, we compare the performances of the two similar codes
(in the same setting as in Sect. 5), which perform a simple vector-valued function
(y = α ∗ x), with differentiate amount of iterations.

As can be seen in Fig. 9, the target, teams and simd directives creates an over-
head when the number of iterations is relatively small, but in all of the other cases
they produce increased performances, up to an order of magnitude. Therefore, this
small, easy to implement changes, can elevate the performances of the compil-
ers.

123

International Journal of Parallel Programming

123

International Journal of Parallel Programming

7.2.2 Fusion of Advantageous

Asmentioned and thoroughly discussed in Sects. 4 and 6, each compiler has its advan-
tages and disadvantages. Each compiler had the best performance in at least one of
the tests, but no compiler had better performance than other compilers in all tests.
This could indicate that a combination of the compilers’ output in some manner might
produce better performances, as the compilers vary in their ability to parallel different
code structures. In a way, by combining the compilers’ output wisely we can exploit
their advantages and minimizing their disadvantages. One can push this idea further
and includeminimal human intervention by removing unnecessaryOpenMPdirectives
produced by the combined output.

In order to achieve the above objective it might be beneficial to design and build a
new parallelization framework, based on current automatic parallelizers, which will
be able to adapt the automated parallelism scheme according to the performances of a
collection of representative runs, and the varying hardware in a given cluster - meaning
that the parallelization directives will constantly be optimized based on the simulation

123

International Journal of Parallel Programming

AutoPar

Par4All

Cetus

Parallelizer

Analysis
Tool

AutoPar
Code

Par4All
Code

Cetus
Code

Parameters-Sweep
& Compilation

AutoPar
Binaries

Par4All
Binaries

Cetus
Binaries

ExecutorDiagnosticsAssembly

Fig. 10 Scheme of the desired parallelizator

diagnostics and scaling results. For example, the optimizationwill be done by choosing
different scheduling methods, chunk size, thread-affinity, thread-placement, number
of threads and so forth. Thread affinity allows the user to define the way the OpenMP
runtime environment will spread the threads across the machine. This can be useful
in cases of high memory/bandwidth, in which the user will want to spread the threads
across the machine as much as possible to maximize the throughput alternatively. In
cases of low memory usage and many instructions, the user will want to make sure
the threads are working on the same cache-line. The three main options for thread
spreading are master, close and spread. Once the user define the spread policy it is
also useful to provide the thread-placement policy that defines on which hardware
specifically (on core-level, on socket-level, or on hyper-thread level) the threads will
run. The new framework will also differentiate those parallel command styles based
on the given cluster architecture. For example, the usage of OpenMP on NUMA
architecture vs. the native run, or by offloading with OpenMP 4.5 to accelerators and
co-processors. Figure 10 outlines the basic architecture of this new framework, and
we can describe it as follows. The software will first apply the appropriate automatic
parallelization compilers on a given source code. Then, a runtime analysis tool will
insert its queries before and after every parallelized loop. Every feasibly appropriate
combination of the parallelized loop, runtime variables, and input sizes will then be
executed with varying problem sizes while the individual execution time of each loop
will be analyzed by the analysis tool. Any loop with a speedup below a given threshold
will be removed. Finally, the framework will produce a new output code that contains
the automated parallelism scheme with the best performance. This framework can
help significantly to both experienced and novice parallel code programmers.

Acknowledgements This work was supported by the Lynn and William Frankel Center for Computer
Science. Computational support was provided by the NegevHPC project [44].

References

1. Geer, D.: Chip makers turn to multicore processors. Computer 38(5), 11–13 (2005)
2. Blake, G., Dreslinski, R.G., Mudge, T.: A survey of multicore processors. IEEE Signal Process. Mag.

26(6), 26–37 (2009)

123

International Journal of Parallel Programming

3. Pacheco, P.: An Introduction to Parallel Programming. Elsevier, Amsterdam (2011)
4. Leopold, C.: Parallel and Distributed Computing: A Survey of Models, Paradigms and Approaches.

Wiley, Hoboken (2001)
5. Dagum, L., Menon, R.: Openmp: an industry standard api for shared-memory programming. IEEE

Comput. Sci. Eng. 5(1), 46–55 (1998)
6. Gropp, W., Thakur, R., Lusk, E.: Using MPI-2: Advanced Features of the Message Passing Interface.

MIT Press, Cambridge (1999)
7. Snir, M., Otto, S., Huss-Lederman, S., Dongarra, J., Walker, D.: MPI-the Complete Reference: The

MPI Core, vol. 1. MIT press, Cambridge (1998)
8. Boku, Taisuke, Sato, Mitsuhisa, Matsubara, Masazumi, Takahashi, Daisuke: Openmpi-openmp like

tool for easy programming in mpi. In Sixth European Workshop on OpenMP, pages 83–88, (2004)
9. Nickolls, J., Buck, I., Garland, M., Skadron, K.: Scalable parallel programming with CUDA. In: ACM

SIGGRAPH 2008 Classes, p. 16. ACM (2008)
10. Oren, G., Ganan, Y., Malamud, G.: Automp: an automatic openmp parallization generator for variable-

oriented high-performance scientific codes. Int. J. Comb. Optim. Probl. Inform. 9(1), 46–53 (2018)
11. Neamtiu, I., Foster, J.S., Hicks, M.: Understanding source code evolution using abstract syntax tree

matching. ACM SIGSOFT Softw. Eng. Notes 30(4), 1–5 (2005)
12. AutoPar documentations. http://rosecompiler.org/ROSE_HTML_Reference/auto_par.html. Accessed

8 Aug 2019
13. ROSE homepage. http://rosecompiler.org. Accessed 8 Aug 2019
14. Dever, M.: AutoPar: automating the parallelization of functional programs. PhD thesis, Dublin City

University (2015)
15. Par4All homepage. http://par4all.github.io/. Accessed 8 Aug 2019
16. PIPS homepage. https://pips4u.org/. Accessed 8 Aug 2019
17. Ventroux, N., Sassolas, T., Guerre, A., Creusillet, B., Keryell, R.: SESAM/Par4all: a tool for joint

exploration of MPSoC architectures and dynamic dataflow code generation. In: Proceedings of the
2012 Workshop on Rapid Simulation and Performance Evaluation: Methods and Tools, pp. 9–16.
ACM (2012)

18. Cetus homepage. https://engineering.purdue.edu/Cetus/. Accessed 8 Aug 2019
19. Dave, C., Bae, H., Min, S.-J., Lee, S., Eigenmann, R., Midkiff, S.: Cetus: a source-to-source compiler

infrastructure for multicores. Computer 42(12), 36–42 (2009)
20. Hall, M.W., Anderson, J.M., Amarasinghe, S.P., Murphy, B.R., Liao, S.-W., Bugnion, E., Lam, M.S.:

Maximizing multiprocessor performance with the suif compiler. Computer 29(12), 84–89 (1996)
21. Pottenger, B., Eigenmann, R.: Idiom recognition in the Polaris parallelizing compiler. In: Proceedings

of the 9th International Conference on Supercomputing, pp. 444–448. ACM (1995)
22. Tian, X., Bik, A., Girkar, M., Grey, P., Saito, H., Su, E.: Intel® openmp c++/fortran compiler for

hyper-threading technology: implementation and performance. Intel Technol. J. 6(1), 36–46 (2002)
23. Bondhugula, U., Hartono, A., Ramanujam, J., Sadayappan, P.: PLUTO: a practical and fully automatic

polyhedral program optimization system. In: Proceedings of the ACM SIGPLAN 2008 Conference
on Programming Language Design and Implementation (PLDI 08), Tucson, AZ (June 2008). Citeseer
(2008)

24. Prema, S., Jehadeesan, R., Panigrahi, B.K.: Identifying pitfalls in automatic parallelization of NAS
parallel benchmarks. In: 2017 National Conference on Parallel Computing Technologies (PAR-
COMPTECH), pp. 1–6. IEEE (2017)

25. Arenaz, M., Hernandez, O., Pleiter, D.: The technological roadmap of parallware and its alignment
with the openpower ecosystem. In: International Conference on High Performance Computing, pp.
237–253. Springer (2017)

26. Bailey, D.H., Barszcz, E., Barton, J.T., Browning, D.S., Carter, R.L., Dagum, L., Fatoohi, R.A., Fred-
erickson, P.O., Lasinski, T.A., Schreiber, R.S., et al.: The nas parallel benchmarks. Int. J. Supercomput.
Appl. 5(3), 63–73 (1991)

27. Graham, S.L., Kessler, P.B., McKusick, M.K.: Gprof: a call graph execution profiler. ACM SIGPLAN
Not. 39(4), 49–57 (2004)

28. Prema, S., Jehadeesan, R.: Analysis of parallelization techniques and tools. Int. J. Inf. Comput. Technol.
3(5), 471–478 (2013)

29. Sohal, M., Kaur, R.: Automatic parallelization: a review. Int. J. Comput. Sci. Mob. Comput. 5(5),
17–21 (2016)

123

http://rosecompiler.org/ROSE_HTML_Reference/auto_par.html
http://rosecompiler.org
http://par4all.github.io/
https://pips4u.org/
https://engineering.purdue.edu/Cetus/

International Journal of Parallel Programming

30. Quinlan, D.: ROSE: compiler support for object-oriented frameworks. Parallel Process. Lett.
10(02n03), 215–226 (2000)

31. Amini, M., Creusillet, B., Even, S., Keryell, R., Goubier, O., Guelton, S., McMahon, J.O., Pasquier, F.-
X., Péan, G., Villalon, P.: Par4all: from convex array regions to heterogeneous computing. In: IMPACT
2012: Second International Workshop on Polyhedral Compilation Techniques HiPEAC 2012 (2012)

32. Lee, S.-I., Johnson, T.A., Eigenmann, R.: Cetus—an extensible compiler infrastructure for source-
to-source transformation. In: International Workshop on Languages and Compilers for Parallel
Computing, pp. 539–553. Springer (2003)

33. Liang, X., Humos, A.A., Pei, T.: Vectorization and parallelization of loops in C/C++ code. In: Pro-
ceedings of the International Conference on Frontiers in Education: Computer Science and Computer
Engineering (FECS). The SteeringCommittee of TheWorldCongress inComputer Science, Computer,
pp. 203–206 (2017)

34. Jubb, C.: Loop optimizations in modern c compilers (2014)
35. Jeffers, J., Reinders, J.: Intel Xeon Phi Coprocessor High Performance Programming. Newnes, Oxford

(2013)
36. Lu, M., Zhang, L., Huynh, H.P., Ong, Z., Liang, Y., He, B., Goh, R.S.M., Huynh, R.: Optimizing the

mapreduce framework on Intel Xeon Phi coprocessor. In 2013 IEEE International Conference on Big
Data, pp. 125–130. IEEE (2013)

37. Heinecke, A., Vaidyanathan, K., Smelyanskiy, M., Kobotov, A., Dubtsov, R., Henry, G., Shet, A.G.,
Chrysos, G., Dubey, P.: Design and implementation of the linpack benchmark for single and multi-
node systems based on Intel® Xeon Phi coprocessor. In: 2013 IEEE 27th International Symposium on
Parallel & Distributed Processing (IPDPS), pp. 126–137. IEEE (2013)

38. Bailey, D.H.: NAS parallel benchmarks. In: Padua, D. (ed.) Encyclopedia of Parallel Computing, pp.
1254–1259. Springer, Heidelberg (2011)

39. NPB in C homepage. http://aces.snu.ac.kr/software/snu-npb/. Accessed 8 Aug 2019
40. Geimer, M., Wolf, F., Wylie, B.J.N., Ábrahám, E., Becker, D., Mohr, B.: The scalasca performance

toolset architecture. Concurr. Comput. Pract. Exp. 22(6), 702–719 (2010)
41. Van der Pas, R., Stotzer, E., Terboven, C.: Using OpenMP The Next Step: Affinity, Accelerators,

Tasking, and SIMD. MIT Press, Cambridge (2017)
42. Sui, Y., Fan, X.I., Zhou, H., Xue, J.: Loop-oriented array-and field-sensitive pointer analysis for auto-

matic SIMD vectorization. In: ACM SIGPLAN Notices, vol. 51, pp. 41–51. ACM (2016)
43. Zhou, H.: Compiler techniques for improving SIMD parallelism. PhD thesis, University of New South

Wales, Sydney, Australia (2016)
44. NegevHPC Project. https://www.negevhpc.com. Accessed 8 Aug 2019

Publisher’s Note Springer Nature remains neutral with regard to jurisdictional claims in published maps
and institutional affiliations.

Affiliations

Re’em Harel1,2 · Idan Mosseri3,4 · Harel Levin4,5 · Lee-or Alon2,6 ·
Matan Rusanovsky2,3 · Gal Oren3,4

Re’em Harel
reemharel22@gmail.com

Idan Mosseri
idanmos@post.bgu.ac.il

Harel Levin
harellevin@gmail.com

Lee-or Alon
lee-or@mail.com

123

http://aces.snu.ac.kr/software/snu-npb/
https://www.negevhpc.com
http://orcid.org/0000-0002-8831-5423

International Journal of Parallel Programming

Matan Rusanovsky
matanru@post.bgu.ac.il

1 Department of Physics, Bar-Ilan University, 52900 Ramat Gan, Israel

2 Israel Atomic Energy Commission, P.O.B. 7061, 61070 Tel Aviv, Israel

3 Department of Computer Science, Ben-Gurion University of the Negev, P.O.B. 653, Be’er Sheva,
Israel

4 Department of Physics, Nuclear Research Center-Negev, P.O.B. 9001, Be’er-Sheva, Israel

5 Department of Mathematics and Computer Science, The Open University of Israel, P.O.B. 808,
Ra’anana, Israel

6 Department of Computer Science, Bar-Ilan University, 52900 Ramat Gan, Israel

123

	Source-to-Source Parallelization Compilers for Scientific Shared-Memory Multi-core and Accelerated Multiprocessing: Analysis, Pitfalls, Enhancement and Potential
	Abstract
	1 Introduction
	1.1 Parallel Programming
	1.2 Automatic Parallelization Techniques

	2 Related Work
	3 Compilers Specifications
	3.1 AutoPar
	3.2 Par4All
	3.3 Cetus

	4 Comparison
	4.1 Criteria and Terminology
	4.2 Test-Cases
	4.2.1 Nested Loops and Array Reduction
	4.2.2 Pointer Aliasing
	4.2.3 Loop Unrolling
	4.2.4 Function Calls

	4.3 Runtime Analysis

	5 Accelerators and Co-processors
	6 NAS Parallel Benchmark
	6.1 NAS Results
	6.2 OpenMP NAS Benchmark
	6.3 The Gap Between and Pitfalls of the Compilers
	6.4 Overcoming the Pitfalls in The Limits of OpenMP 2.5

	7 Conclusions and Future Work
	7.1 Conclusions
	7.2 Future Work
	7.2.1 Adapt to OpenMP 4.5
	7.2.2 Fusion of Advantageous

	Acknowledgements
	References

