
The Open University of Israel

Department of Mathematics and Computer Science

Optimizations of Management Algorithms for

Multi-Level Memory Hierarchy

Thesis submitted as partial fulfllment of the requirements

towards an M.Sc. Degree in Computer Science

The Open University of Israel

By

Gal Oren

Prepared under the supervision of Dr. Leonid Barenboim

and under the scientifc guidance of Dr. Lior Amar

December 2015

Acknowledgments

I would like to express my sincere gratitude to my scientifc supervisor over the last

two years, Dr. Leonid Barenboim, and to my scientifc mentor over the last four years,

Dr. Lior Amar, who led me to my current achievements in the feld of computer science -

in theory as well as in practice.

Also, I would like to thank my research facility – Nuclear Research Center - Negev

(NRCN) – and its' executives for giving me the opportunity to learn for this Master's

Degree as a permanent part of my professional experience.

Finally, I would like to thank my dear friend Noam Shimoni for his editorial work of

this thesis.

Content

1 Data Structure Algorithms Implementation in Memory Hierarchies.................................2

1.1 Introduction: Memory Hierarchy Awareness..2

1.2 Previous Work: Usage of the Memory – Paging vs. STXXL......................................3

1.3 Future Memory: Storage Class Memory...4

1.4 The Memory Allocation Manager (MAM)..6

1.5 Data Structures Usage of the Memory Allocation Manager.......................................8

1.6 Paging Algorithms as a Practical Resort..9

2 Page Replacement Algorithms Implementation in Memory Hierarchies..........................11

2.1 Usage of Paging Concept in Memory Hierarchies...11

2.2 Basic Paging Mechanism ..12

2.3 The Optimal Page Replacement Algorithm..12

2.4 The N-Level Not Recently Used (NRU) Page Replacement Algorithm...................14

2.5 The N-Level First-In-First-Out (FIFO) Page Replacement Algorithm....................17

2.6 The Least Recently Used (LRU) and Not Frequently Used (NFU Page
Replacement Algorithms..20

2.7 The N-Level Aging Page Replacement Algorithm ...21

3 The DeMemory Simulator..25

3.1 Implementation of Memory-Aware Paging Algorithms..25

3.2 The DeMemory Code Structure..25

3.3 The DeMemory Simulator Operation..26

3.4 Example of Usage..27

3.5 Analysis of Output ...27

3.6 Algorithms Benchmark..29

3.7 Results and Analysis ..30

3.8 Comparison of Diferent N-Level Algorithms..32

4 Conclusions and Future Work..36

4.1 Conclusions..36

4.2 Future work...36

5 References...37

List of Figures

1 The Memory Hierarchy and its Latency and Bandwidth Parameters. 2

2 Serial Disk Model (SDM) vs. Parallel Disk Model (PDM). 4

3 The SCM in Context of the Available Memories. 5

4 The Memory Allocation Manager (MAM) Diagram of Usage. 6

5 The Page-Table Entry. 14

6 DeMemory Example of Output in an N-Level Memory-Aware Aging Paging
Algorithm (N = 3).

28

7 The Hit / Miss Ratio as Function of the Amount of Frames in Memory (F). 33

8 The Hit / Miss Ratio as Function of the Amount of Unique Page Indexes
(I).

33

9 The Hit / Miss Ratio as Function of the Amount of Page References (R). 33

10 The HPC Hit / Miss Ratio as Function of the Amount of Frames in
Memory.

34

11 The HPC Hit / Miss Ratio as Function of the Amount of Unique Page
Indexes.

34

12 The HPC Hit / Miss Ratio as Function of the Amount of Page References. 34

13 The Hit / Miss Ratio as Function of the Amount of Page References
including the Hit / Miss Ratio for a Modifed Version of the N-Level
Memory-Aware Aging Paging Algorithm.

35

List of Tables

1 The DeMemory Parameters, Types and Functionality. 27

List of Equations

1 The Level (L) for insertion of the page with the lowest referenced counter. 23

2 The Total Volume of the whole Memory Complex in Average. 30

3 The Total Speed of the whole Memory Complex in Average. 30

Abstract

Memory and storage are often assumed to be unsophisticated, fat resources, with simple

properties, such as a constant access time. Over the years this assumption has been proven to be

wrong, and understanding of the memory hierarchy could be useful in order to enhance the

performance of an algorithm or a data structure. For example, the Storage Class Memory (SCM),

widely known as Persistent Memory, is a new technology which represents a new hybrid form of

storage and memory with unique characteristics, meaning a memory which is non-volatile, cheap in

per bit cost, has fast access times for both read and writes, and is solid state.

Operating Systems are likely use the SCM as either very fast block storage devices

formatted by fle systems and databases, or as direct memory mapped “fles” for the next generation

of programs. In the near future the SCM is predicted to modify the form of new programs, the

access form to storage, and the way that storage devices themselves are built. Therefore, a

combination between the SCM and a designated Memory Allocation Manager (MAM) that will

allow the programmer to manually control the diferent memories in the memory hierarchy will be

likely to achieve a new level of performance for memory-aware data structures. Although the

manual MAM seems to be the optimal approach for multi-level memory hierarchy management,

this technique is still very far from being realistic, and the chances that it would be implemented in

current codes using High Performance Computing (HPC) platforms is quite low.

This premise means that the most reasonable way to introduce the SCM into any usable

and popular memory system would be by implementing an automated version of the MAM using

the fundamentals of paging algorithms, as used for two-level memory hierarchy. Our hypothesis is

that achieving appropriate transferability between memory levels may be possible using ideas of

algorithms employed in current virtual memory systems, and that the adaptation of those

algorithms from a two-level memory hierarchy to an N-level memory hierarchy is possible.

In order to reach the conclusion that our hypothesis is correct, we investigated various

paging algorithms, and found the ones that could be adapted successfully from two-level memory

hierarchy to an N-level memory hierarchy. We discovered that using an adaptation of the Aging

paging algorithm to an N-level memory hierarchy results in the best performances in terms of Hit /

Miss ratio. In order to verify our hypothesis we build a simulator called “DeMemory simulator” for

analyzing our algorithms as well as for other algorithms that will be devised in the future.

1

1 Data Structure Algorithms Implementation in Memory
Hierarchies

1.1 Introduction: Memory Hierarchy Awareness

Often memory is assumed to be an unsophisticated, fat resource, with simple properties,

much like a constant access time [1]. Generally speaking, this is seldom the case, because

common computers often have fve memory layers with diferent properties. Three of these

layers dwell on the processor chip, one layer is the RAM memory and one layer is the

physical memory, such as SSD and HDD (Figure 1). The layers on the processor chip are

referred to as L1 cache, L2 cache and L3 cache. L1 cache is a rather small piece of memory

with extremely high access time, used directly by the processor. L2 cache is slightly slower

and vastly larger than L1 cache. L3 cache is slower than L2 and L1 caches, and it is shared

by all cores. When accessing memory, the CPU will look in the main memory only after it

looks in L1 cache, L2 cache, and L3 cache. In the following chapters we will refer to this

memory hierarchy using the term “two-level memory hierarchy”, excluding the three cache

levels from our discussion, because of our sole interest in the RAM-HDD match.

Figure 1: The Memory Hierarchy and its Latency and Bandwidth Parameters (Rambus,
2015). The latency and bandwidth penalty between the two upper levels and the two lower
levels is about 2-3 orders of magnitude.

Understanding the memory hierarchy could be useful in order to enhance the

performance of an algorithm or a data structure [2]. Algorithms and data structures that

2

adjust to a specifc memory organization are known as memory-aware or memory-

conscious. Algorithms and data structures that are planned to execute well with memory

unawareness, independently of the memory parameters and hierarchy are called memory-

oblivious. Design of memory-aware algorithms requires awareness of the memory hierarchy.

1.2 Previous Work: Usage of the Memory – Paging vs. STXXL

Operating Systems (OS) implement the virtual memory mechanism that extends the

working space for applications, mapping an external memory fle (page/swap fle) to

virtual addresses. This idea supports the Random Access Machine model [3] in which a

program has an infnitely large main memory. With virtual memory, the application does

not know where its data is located, whether in the main memory or in the swap fle. This

abstraction does not have large running time penalties for simple sequential access

patterns: The OS is even able to predict them and to load the data ahead of time.

For more complicated patterns these remedies are not useful and even

counterproductive: The swap fle is accessed very frequently; the executable code can be

swapped out in favor of unnecessary data; the swap fle is highly fragmented and thus

many random I/O operations are needed even for scanning.

The OS cannot adapt to complicated access patterns of applications dealing with

massive data sets. Therefore, there is a need for explicit handling of external memory

accesses. The applications and their underlying algorithms and data structures should care

about the pattern and the number of external memory accesses (I/Os), which they cause.

Several simple models have been introduced for designing I/O-efcient algorithms

and data structures (also called external memory algorithms and data structures). The

most popular and realistic model is the Parallel Disk Model (PDM) of Vitter and Shriver

[4]. In this model, I/Os are handled explicitly by the application.

An I/O operation transfers a block of B consecutive elements from/to a disk to

minimize the latency. The application tries to transfer D blocks between the main memory

3

of size M bytes and D independent disks in one I/O step to improve bandwidth (Figure 2).

The input size is N bytes which is quite larger than M.

Figure 2: Serial Disk Model (SDM) vs. Parallel Disk Model (PDM) ([5]).

The most common implementation of the PDM model can be found at the STXXL

project [5]. The core of STXXL is an implementation of the C++ standard template

library STL for external memory (out-of-core) computations, i.e., STXXL implements

containers and algorithms that can process huge volumes of data that only ft on disks.

While the compatibility to the STL supports ease of use and compatibility with existing

applications, another design priority is high performance. The performance features of

STXXL include: Transparent support of multiple disks, variable block length, overlapping

of I/O and computation, and prevention of OS fle bufering overhead.

1.3 Future Memory: Storage Class Memory

Storage is considered to be a mechanical HDD that supplies virtually unlimited capacity,

when compared to DRAM, and it is also perpetual, which means that data is not lost if

the computer happens to crash or disconnect from electricity. The issue with hard drives is

that in various situations they are unable to supply data to applications with the sufcient

speed [6].

Storage Class Memory (SCM) proposes to minimize or even close the widening gap

between CPU processing speeds, the need to rapidly transfer big data blocks, and the read-

write speeds suggested by HDD reliant systems. The SCM [7], widely known as Persistent

4

Memory, is a technology which represents a new hybrid form of storage and memory with

unique characteristics, meaning a memory which is non-volatile, cheap in a per bit cost,

has fast access times for both read and writes, and is solid state.

The SCM has a unique mechanism. Created out of fash-based NAND, SCM is a

new form of storage that can provide a middle step between high-performance DRAM and

cost-efective HDDs (Figure 3). It may very well provide read performance analogous to

DRAM (perhaps even better in some cases), and write performances that are signifcantly

faster than HDD technology (factors of hundreds better than HDD and even beyond).

Also, it is predicted that the production costs of SCM and HDD will be broadly similar by

the end of this decade [8].

Figure 3: The SCM in Context of the Available Memories (IMEX Research, 2011).

Those new SCM storage-memory systems connect to memory slots in a server and

are mapped and accessed in the same fashion as the memory, even though they are slightly

slower, and they can be addressed atomically at either the byte or the block level, unlike

previous eras of storage technology. The SCM can be used directly as execution memory or

data storage memory. The current SCM products include the improved Flash [9], the

Phase Change Memory (PCM) [10], the Magnetic RAM (MRAM) [11], the Solid

Electrolyte RAM – Nano-Ionic RAM [12], the Ferroelectric RAM (FRAM) [13] and the

Memristor [14].

5

Operating Systems are likely to use the SCM as either very fast block storage

devices formatted by fle systems and databases, or as direct memory mapped “fles” for

next generation of programs. In the near future the SCM is predicted to modify the form

of programs, the access form to storage, and the way that storage devices themselves are

built. Therefore, a combination between SCM and the existing memories, using a

new memory allocation manager that will act like STXXL, will be likely to achieve

a new level of performance for memory-aware data structures. Such a memory system

with diferent kinds of memory speeds, access fashions and volumes is modeled by a

collection (sorted according to memory speeds) of N arrays, such that each array

represents a memory level, where level 1 is the fastest and level N is the slowest.

1.4 The Memory Allocation Manager (MAM)

Figure 4: The Memory Allocation Manager (MAM) Diagram of Usage.

The Memory Allocation Manager (MAM), based on the idea of C language malloc [15] and

STXXL allocation modules, will take the power of the memory management from the

6

virtual memory mechanism and will deliver it to the programmer. In this scenario there is

no common dichotomy between a single memory and a single storage, but a plurality of

memories, which are the new MAM, by the instructions from the application, will take

charge of them.

The programmer will have the option to control those memories – serially or in

parallel – in order to achieve the best performance possible.

void *ptr1, *ptr2

ptr1 = alloc_cache_mem(...) ; free_cache_mem(ptr1)

ptr2 = alloc_block_mem(...) ; free_block_mem(ptr2)

In each of those categories the programmer will be able to set three elements:

1. The amount of memory the application needs (100MB, 1TB etc.) – Mandatory.

2. The speed degree of the memory (Fast, Medium, Slow) which depends on two

factors:

2.1. The physical distance between the CPU and the memory.

2.2. The type of memory (RDR vs. DRAM in the cache line access category or

Storage Class Memory vs. HDD in the block access memory category).

3. A pointer to an opposite type of allocated memory, which will create a

synchronization between the current allocation and the previous one in a paging

style fashion – Optional.

void *ptr1, *ptr2

ptr1 = alloc_block_mem(1TB, Slow, ptr2) | free_block_mem(ptr1)

ptr2 = alloc_cache_mem(100MB, Fast, ptr1) | free_cache_mem(ptr2)

7

First, a data structure (hash table, in this example) will be created on the chosen memory,

and it will be specifed how much memory should this data structure use from its main

memory type.

slow_ht = ht_create(500GB, ptr1)

fast_ht = ht_create(50MB, ptr2)

After the initiation of the cache line access memories and the block access memories

it will be possible to use the diferent memories.

• Insert: Insertion of a key-value arguments to a specifc type of memory.

• Get: Get a hash value of specifc key from a specifc type of memory.

• Remove: Remove a specifc value of specifc key from a specifc type of memory.

Insert(key, value, Fast_HT)

Get(“Don Draper”, Slow_HT)

Remove(“Dick Whitman”, Fast_HT)

At the end of use, the allocated hash tables memories should free themselves by a

free command. Note, that this is not a de-allocation of the main memories, but just of the

hash table that is allocated on it.

Free(Fast_HT, Slow_HT)

1.5 Data Structures Usage of the Memory Allocation Manager

There are clear benefts of using the Memory Allocation Manager (MAM) API at the

design and implementation stage of any data structure, which needs to handle massive

8

data sets. For example, here are fve possible options to use the MAM to optimize hash

tables performance.

1. Given that the keys are arranged in a list form, there is an option that the frst

immediate key will be stored in the fastest memory available, and as far as the list

expands, the other keys will be stored in slower memories.

2. Using the parallel fashion of the memory manager, there is an option to check for a

match to the hash function result in all the diferent memories at once, and by that

to create a parallel access to the diferent serial memories.

3. Start flling the fastest memory with the hash function results, and only when it

reaches its capacity continue to the slower memory. This memory allocation fashion

can be repeated to the slowest memory available.

4. During the usage of the hash table, the data structure will create a dynamic

histogram of the most and the least called keys and by that will rearrange their

locations in the memories, from the fastest to the slowest.

5. When the keys are already known, the data structure will create a histogram of the

keys, and will divide the most common keys to the fastest memories and the rarest

keys to the slowest memories.

Therefore, it seems reasonable to re-modify the data structures to use those kinds of

paradigms using the MAM. However, this kind of solution arises a problem, which lies

within the solution. The reason for this problem is that the algorithms require not only to

re-modify the memory platform and the access to it, but also the code that is currently

based on two-level memory hierarchy. Thus a practical resort, which will represent a

compromise, is in need.

1.6 Paging Algorithms as a Practical Resort

Although the Memory Allocation Manager seems to be the best approach for multi-level

memory hierarchy management, this technique is still very far from being realistic, and the

9

chances that it would be implemented in current codes using High Performance Computing

(HPC) platforms is quite low. Considering the following reasons, it seems that the MAM

will only stay on paper (or in code editors) and will not be used in most of current and

near future systems. The reasons are:

1. A rewrite of source codes in a way that will be suitable to work with the MAM is

not realistic, specifcally and especially for HPC usages. Most of the research centers

which use large computer clusters have programs that used to be operational for

ages and are very big, complex and sustainable. Hence, the solution of rewriting the

whole code and redefning the data structures to use the MAM is not possible, and

can be efcient only for several specifc application that are written today, yet not

for past applications.

2. Because Storage Class Memory (SCM) is breakthrough technology, it would not be

reasonable to wait for several more decades and see if people will change their codes.

Instead, upgrading HPC clusters to a new level of sophistication and performance

without any need to rewrite the code or manage the memory would be wiser.

3. Even the previous platforms, such as STXXL, did not become widespread among

developers, although those platforms were introduced in times when memory layers

were actually more expensive than current times. This indicates that using MAM

would not be benefcial today for most purposes.

Therefore, an implementation of a multi-level memory hierarchy management

should not incur any changes in the data structures. This premise means that the most

reasonable way to introduce the SCM into any usable and popular memory system would

be by implementing an automated and not explicit version of the MAM. Thus, introducing

the MAM concepts and the multiple memory levels awareness into the classic paging

algorithms can be a good solution, which will not be a big compromise. This idea can be

achieved by introducing a new automated layer that will select the most appropriate

memory levels for allocating space, and that will move data between memory levels for

optimizing performance in the fashion of paging algorithms.

10

2 Page Replacement Algorithms Implementation in Memory
Hierarchies

2.1 Usage of Paging Concept in Memory Hierarchies

As mentioned in the previous chapter, there are clear benefts in using the Memory

Allocation Manager (MAM) API at the design and implementation stage of any data

structure which needs to handle massive data sets, especially hash tables. Also, we ofered

fve conceivable options to use it in order to optimize those hash tables performance.

Among those fve options, the most reasonable and logical option for optimization, which

also matches the current paradigm in a two-level memory hierarchy, is the one in which

the following hold: It is given that the keys are arranged in a list form; There is an option

that the frst immediate key will be stored in the fastest memory available; And as far the

list expands, the other keys will be stored in the slower memories.

However, for supporting that kind of optimization, the MAM alone is not sufcient

because the hash table implementation requires a collision resolution policy. This means

that in some point there is going to be a shortage of memory space and there will be a

need to make transfers between the diferent kinds of memory, from the faster ones to the

slower ones, or the opposite. We also argued that transformation of the code of most

current High Performance Computing (HPC) services for the MAM architecture is not

realistic. Therefore, we propose to employ an additional automated and not code explicit

layer that determines the appropriate levels in the memory hierarchy for placing data. This

layer receives memory allocation requests (without level specifcations), and determines the

appropriate memory level in which allocations will be made. In addition, this layer moves

data between the diferent memory levels in order to optimize performance.

Our hypothesis is that achieving that kind of transferability between memory levels

may be possible using ideas of algorithms employed in current virtual memory system, and

that the adaptation of those algorithms from a two-level memory hierarchy to an N-level

memory hierarchy may be possible. In that notion, each virtual memory page is a hash

11

table entry (or entries), and each of the virtual memory swaps can be done like the MAM

would do if it would implemented with knowledge of the appropriate levels, regardless of

the access fashion.

In order to reach a conclusion that our hypothesis is correct, we needed to clarify which

of the paging algorithms could be adapted successfully from a two-level memory hierarchy

to an N-level memory hierarchy. For doing so, we have to thoroughly investigate the

current paging mechanism and the main paging algorithms.

2.2 Basic Paging Mechanism

It is widely known [16] [17] [18], that an Operating System has to select a page to evict

from memory to create a space for the page that has to be inserted in, when a page fault

happens. If the page has not been altered, the copy on the hard drive is already up to date,

so no rewrite is necessary, and the page to be read in just overwrites the page being

removed. If, however, the page to be removed has been modifed while in memory, it must

be rewritten to the hard drive to keep the hard drive copy updated.

Although it is possible to select a random page to be removed at each page fault,

system performance would beneft greatly if a page that is not massively used is picked up.

If a massively used page is evicted, it will apparently have to be brought back in soon,

resulting in unnecessary overhead. A lot of scientifc research has been performed on the

subject of page replacement algorithms, both theoretical and experimental.

2.3 The Optimal Page Replacement Algorithm

The optimal prospective page replacement algorithm is simple to describe but cannot be

implemented, thus there is no expectancy that usage of a simply described paging

technique in N-level memory hierarchy will match the theoretical results.

The optimal page replacement algorithm is the one in which the following hold: When

a page fault happens, some series of pages is in the memory system. One of these pages

12

will be referenced on the upcoming instruction. The pages that have not been referenced

may be non-referenced even after unlimited amount of instructions later. Each page can be

tagged with the amount of instructions that will be executed prior to the time that that

page is frst referenced. Simply, the optimal page algorithm evicts the page with the

highest tag.

The only problem with the optimal algorithm is that it is unimplementable, because at

the moment of a page fault the Operating System (OS) has no information about the time

when each of the pages will be referenced next. But, using a simulator which will keep

track of all page references, it is possible to execute an optimal page replacement on the

second run by using the page reference database accumulated during the frst run.

Using this method it is possible to compare the performance of implementable

algorithms with the best possible one. If for instance an OS accomplishes achieving a

performance of about 10% worse than the optimal algorithm, efort spent in searching for a

better algorithm will produce at most a 10% improvement. To prevent possible confusion,

it should be stated that this database of page references refers only to the one simulation

that has just been measured and then with only one particular input. The page

replacement algorithm derived from it is therefore specifc to that one simulation and input

data. Of course, despite the fact that this method is useful for evaluating page replacement

algorithms, it has no usage in practical systems. In the sequel we will present algorithms

that are useful on real systems, either with two-level or N-level memory hierarchies.

It is important to mention that in hash table insertions we sometimes can predict the

optimal page replacement at the frst run using an analysis on the entries themselves, but

it is not always guaranteed that that kind of analysis will be possible or plausible.

Therefore, the comparison method between the frst and the second run will probably be

more efective to discover which is the optimal paging algorithm who suits best to the

specifc characterization of the insertion to the hash table. But, because this is not

practical for real systems we will present modifcations to the current two-level memory

page replacement algorithms and will transform them to N-level algorithms.

13

2.4 The N-Level Not Recently Used (NRU) Page Replacement Algorithm

In order to let the Operating System gather meaningful statistical information about which

pages are being referenced and which ones are not, most computers with a virtual memory

mechanism have two status bits bound to each page. The R bit is set every time the page

is referenced (either read or written). The M bit is set every time the page is written to.

The R and M bits are included in each page table entry (Figure 5), and they must be

updated on every memory reference, therefore it is necessary that they are set by the

hardware. Whenever a bit is set to 1, it stays in that condition until the OS resets it to 0

in software.

Figure 5: The Page-Table Entry (BSODTutorials, 2013).

The referenced and modifed bits are usable to build a straightforward paging algorithm

in which the following hold: When a process starts to run, the R and M page bits for all of

its pages are set to 0 by the OS. On each clock interrupt, the operation system clears the

R bit, to diferentiate pages that have been referenced lately from those that have been

not, but do not clear the M bit because this data is necessary to understand whether the

page has to be rewritten to the disk or not. Whenever a page fault happens, the OS checks

all the pages and splits them into 4 subsections based on the present values of their R and

M bits, in which the following hold: Subsection 0: not referenced, not modifed; Subsection

1: not referenced, modifed; Subsection 2: referenced, not modifed; and subsection 3:

referenced, modifed.

The NRU (Not Recently Used) algorithm evicts some page from the lowest numbered

nonempty subsection. Therefore it is obvious that the meaning of the algorithm is that it is

better to evict a modifed page that has not been referenced in at least one clock interrupt

than a clean page that is used massively. Thus, the central attractiveness of the NRU

14

paging algorithm is that it is very conceivable, does not require too many resources to

implement, and gives a performance that may be adequate even though not optimal.

Therefore, the transition of this algorithm to an N-level memory hierarchy model is

fairly simple, because it only requires each level of memory to set a diferent clock tick

rate. In this hypothesis, the clock tick rate needs to be proportionate to the access speed of

the specifc level of memory, and the pages will “difuse” from one layer of memory to the

other by demand. By this division of rates it is possible to get a uniformed removals of

modifed pages that have not been referenced over the N-level memory hierarchy (L = 1:

Highest, L = N: Lowest).

Formulation of the NRU algorithm for N-level memory hierarchy:

• Set memory levels to N (ML = N).

• Set current memory level pointer to the highest (L = 1).

1. Insertion of a new page:

1.1. If the current memory level pointer is higher than the lowest memory level

(L > ML) :

1.1.1. Return False. /* Recursion Termination */

1.2. Call to the page.

1.3. If the page exists in the memory / storage:

1.3.1. Check if placing in the L-level of memory is possible.

1.3.2. If placement possible:

1.3.2.1. Place page at the L-level of memory.

1.3.2.2. Return True. /* Recursion Termination */

1.3.3. Else If placement impossible:

15

1.3.3.1. Remove the Not Recently Used page.

1.3.3.2. Place the page instead of the removed page.

1.3.3.3. Do Insertion of the Not Recently Used page to a lower

level (L = L+1) /* Recursion Invocation */

1.4. Else If page does not exist in the memory / storage:

1.4.1. Return False. /* Recursion Termination */

2. Call to a page:

2.1. Calculate the addressing of the page in the memory / storage.

2.2. If page found:

2.2.1. Return Real Addressing.

2.3. Else If page was not found:

2.3.1. Return False.

3. Remove of a specifc page:

3.1. Store the page in a temporary storage.

3.2. Free the addressing of the page.

3.3. Return the page from the temporary storage.

4. Update of an existing page (by the OS):

4.1. If Read / Write action performed on the page:

4.1.1. Set R bit to 1 (R = 1).

4.2. If Modifcation action performed on the page:

4.2.1. Set M bit to 1 (M = 1).

16

4.3. If clock interrupt:

4.3.1. Set R bit to 0 (R = 0).

2.5 The N-Level First-In-First-Out (FIFO) Page Replacement Algorithm

The First In First Out page replacement algorithm (also known as FIFO) evicts the page

that aged in the Operating System (OS) for the longest period of time. The OS follows

after the arrangement in which pages are placed in the main memory. When there is a

need to evict a page, the algorithm selects the one that aged in the main memory for the

longest period of time. Intuitively, it is plausible that the selected page for eviction has had

its opportunity to be referenced and it is time to give another page that opportunity.

The problem with the frst-in-frst-out algorithm is that it can replace massively

used pages too, which would be a very unfortunate selection, because the page would be

called back to main memory almost at the same time it was evicted – a situation that will

increase the page-fault rate. This poor chain of events can be controlled and eliminated by

implementing FIFO with a referenced bit for each page and evicting a page only if its

referenced bit is set to zero. The second-chance variation of FIFO do so by checking the

referenced bit of the most aged page in the following way: If the R bit is equal to 0, the

second-chance variation instantly chooses that page for eviction. But, if the R bit is equal

to 1, the algorithm sets the bit as 0, and moves the page to the tail of the FIFO queue. By

doing so, a page of this kind is handled basically in the same way as a new arrival page.

Gradually, the page moves towards the head of the queue. At the time when the page

arrives at the head, it will be chosen for eviction only if the referenced bit is equal to 0.

Active pages – in which their R bits are still equal to 1 – will be chosen to go back to the

tail of the list, and therefore they will remain in main memory.

The clock page replacement algorithm, which actually results in the same outcome

as the second-chance page replacement algorithm, organizes the pages in a cyclic list

instead of a regular list. At every occasion when a page fault happens, a list pointer

revolves around the cyclic list in the same fashion as the spin of a hand of the clock. At

17

the time a page's R bit is equal to 0, the pointer is moved to the next part of the list,

imitating the transfer of this page to the back of a FIFO queue. The clock page

replacement algorithm sets fresh arrivals in the frst page it comes across with the R bit

equals to 0.

Therefore, the adaptation of this algorithm (with the second-chance and clock page

replacement strategy) to an N-level memory hierarchy model requires a gradual eviction of

pages to a lower level of memory. When the referenced bit of the oldest page is of, the

algorithm should immediately select that page for replacement. At that stage, the

algorithm will need to decide to which level of memory it will be the best to evict the page.

Based on the reasonable assumption that the faster the level of memory is, the better it

will be to place the evicted page to; and based on the knowledge that the upper levels of

memory are not an option for eviction, the algorithm will try frst to transfer the selected

page of a level i to the (i+1)-level of memory. In case of failure to transfer the page due to

a full capacity situation in the (i+1)-level, the algorithm will try to place the page in a

lower level of memory (i+2, i+3, etc.) until the eviction process succeeds.

Formulation of the FIFO algorithm for N-level memory hierarchy:

• Set memory levels to N (ML = N).

• Set current memory level pointer to the highest (L = 1).

1. Insertion of a new page:

1.1. If the current memory level pointer is higher than the lowest memory level

(L > ML) :

1.1.1. Return False. /* Recursion Termination */

1.2. Call to the page.

1.3. If the page exists in the memory / storage:

1.3.1. Check if placing in the L-level of memory is possible.

18

1.3.2. If placement possible:

1.3.2.1. Place the page at the L-level of memory.

1.3.2.2. Return True. /* Recursion Termination */

1.3.3. Else If placement impossible:

1.3.3.1. If the reference bit of at least one of the pages is set to 0

(R = 0):

1.3.3.1.1. Remove a page with reference bit set to 0.

1.3.3.1.2. Place the page instead of the removed page.

1.3.3.1.3. Do Insertion of the page with reference bit set to

0 to a lower level (L = L+1). /* Recursion Invocation */

1.3.3.2. Else If the reference bit of all of the pages is set to 1 (R =

1):

1.3.3.2.1. Do Insertion of the page to a lower level (L =

L+1). /* Recursion Invocation */

1.4. Else If page does not exist in the memory / storage:

1.4.1. Return False. /* Recursion Termination */

2. Call to a page:

2.1. Calculate the addressing of the page in the memory / storage.

2.2. If page found:

2.2.1. Return Real Addressing.

2.3. Else If page was not found:

2.3.1. Return False.

19

3. Remove of a specifc page:

3.1. Store the page in a temporary storage.

3.2. Free the addressing of the page.

3.3. Return the page from the temporary storage.

4. Update of an existing page (by the OS):

4.1. If Read / Write action performed on the page:

4.1.1. Set R bit to 1 (R = 1).

4.2. If the page reached to the head of the FIFO queue and the page reference

bit is on (R = 1):

4.2.1. Turn of the reference bit (R = 0) and moves the page to the tail of

the FIFO queue.

2.6 The Least Recently Used (LRU) and Not Frequently Used (NFU Page
Replacement Algorithms

A satisfactory estimation to the best algorithm possible relies on our knowledge that pages

that have been referenced massively in the near past will apparently be referenced

massively again in the foreseeable near future. In contrast, pages that have not been

referenced massively for a long time will seemingly remain not referenced for prolonged

time. This notion profers an implementable algorithm: When a page fault happens, evict

the page that has not been referenced for the most prolonged time. This idea is called

Least Recently Used (LRU) paging.

Despite the fact that LRU is theoretically implementable, it is by no means

inexpensive. To completely put LRU into practice, it is essential to keep a data structure –

such as a linked list – that holds all of the pages of the memory system, with the Most

Recently Used (MRU) page at the beginning and the LRU page at the end. The problem is

20

that the list necessarily has to be updated on each memory reference, all the time.

Searching for a page in the list, erasing it, and then transferring it to the beginning of the

list is a very time consuming activity, even if it is was implemented in hardware (assuming

that such hardware could even be built).

Although there are two LRU algorithms that are implementable in theory [19],

there are no machines (except for some small portion of recent computers) that have the

appropriate hardware for those algorithms, so there is no concrete beneft in using them.

Therefore, there is a need for an algorithm that could be implemented in software. One of

the possible algorithms is known as the Not Frequently Used (NFU) algorithm. In this

algorithm, a counter is attached to each of the pages, when those counters are initially

equal to zero. At every clock interrupt, the OS inspects all the pages in the memory

system. For every page the algorithm sums the reference bit (which equal to 0 or 1), and

in this way it is possible to get a histogram of how often each of the pages has been

referenced. Obviously, when a page fault happens, the page with the smallest counter value

is selected for eviction.

The major difculty with the NFU algorithm is that it is designed to remember all

of the information without any option to erase the counters when there is such a need,

which consequently may result the OS to evict referenced and crucial pages instead of

pages that have been used in the past, but are not used any more. Luckily, a slight

improvement to the NFU algorithm enables it to emulate LRU sufciently well. This

improvement of the NFU algorithm is also known as the Aging algorithm [16] [17] [18].

2.7 The N-Level Aging Page Replacement Algorithm

The Aging algorithm is a small modifcation of Not Frequently Used algorithm which

makes it possible to simulate Least Recently Used algorithm quite well. Instead of only

incrementing the counters of pages referenced, the variation has two parts: First, the

counters are shifted right once before the R bit is inserted, meaning that there is actually a

division by 2 of the represented decimal number. Second, the R bit is inserted to the

21

leftmost bit, instead of inserting it to the rightmost bit. For instance, if a page has

referenced bits 1,1,0,0,0 in the past 5 clock ticks, its referenced counter will look like this:

10000000, 11000000, 01100000, 00110000, 00011000. When a page fault occurs, the page

whose counter is the lowest is removed. It is clear that a page that has not been referenced

for about K clock ticks will have K leading zeros in its counter (like the referenced counter

in the example at the ffth clock tick which has 3 leading zeros after 3 non-referenced clock

ticks), and therefore will have a lower value than a counter that has not been referenced

for K-1 clock ticks.

The transition of the Aging algorithm to an N-level memory hierarchy model can

even add another level of sophistication and optimization, especially because of the

existence of a linear proportion between the degradation of the referenced bits and the

amount of time that a specifc page has not been in use. In this hypothesis, unlike in the

other N-level memory hierarchy paging algorithms adaptations and adjustments shown

before, there is an interesting phenomenon. Specifcally, there is a possibility to create a

direct link between the amount of zeros in the beginning of the page referenced bits to the

level of memory that that page should be evicted to.

Based on the knowledge that the amount of zeros points to the amount of unreferenced

past clock ticks – and therefore on the page aging status – it would be wise to evict the

page straight to its proportionate level of memory. Hence, by forming a dynamic pyramid

hierarchy of both page and memory necessity it becomes possible to get signifcantly better

performances for a paging algorithm in an N-level memory hierarchy. Therefore, we

suggest that the modifed Aging paging algorithm will best suit our goal.

Formulation of the Aging algorithm for N-level memory hierarchy:

• Set memory levels to N (ML = N).

• Set current memory level pointer to the highest (L = 1).

22

1. Insertion of a new page:

1.1. If the current memory level pointer is higher than the lowest memory level

(L > ML) :

1.1.1. Return False. /* Recursion Termination */

1.2. Call to the page.

1.3. If the page exists in the memory / storage:

1.3.1. Check if placing in the L-level of memory is possible.

1.3.2. If placement possible:

1.3.2.1. Place page at the L-level of memory.

1.3.2.2. Return True. /* Recursion Termination */

1.3.3. Else If placement impossible:

1.3.3.1. Find the page with the lowest referenced counter:

1.3.3.1.1. Remove the page with the lowest referenced

counter.

1.3.3.1.2. Place the page instaed of the removed page.

1.3.3.1.3. Do Insertion of the page with the lowest

referenced counter to the proportionate level of memory

based on the amount of the zeros in the beginning of the

page reference bits (Equation 1).

/* Recursion Invocation */

 L=⌈ ∑ Amount of Initial Zero Bits

⌈∑ Amount of Reference Bits

ML
⌉
⌉ (1)

1.4. Else If page does not exist in the memory / storage:

1.4.1. Return False. /* Recursion Termination */

23

2. Call to a page:

2.1. Calculate the addressing of the page in the memory / storage.

2.2. If page found:

2.2.1. Return Real Addressing.

2.3. Else If page was not found:

2.3.1. Return False.

3. Remove of a specifc page:

3.1. Store the page in a temporary storage.

3.2. Free the addressing of the page.

3.3. Return the page from the temporary storage.

4. Update of an existing page (by the OS):

4.1. If Read / Write action performed on the page:

4.1.1. Set R bit to 1 (R = 1).

4.2. If clock interrupt:

4.2.1. Right Shift one bit to all of the pages counters.

4.2.2. Add the R bit to the leftmost bit of all of the pages counters.

24

3 The DeMemory Simulator

3.1 Implementation of Memory-Aware Paging Algorithms

As a consequence of our hypothesis regarding the generalization needed to transfer the

classic Aging page replacement algorithm to be applicable to multiple levels of memory,

the immediate goals are to implement the idea of the Aging algorithm to an N-level

memory hierarchy model, and to create a standard simulation for researchers around the

world for further research and inspection of the relatively new feld of multi-level memory

hierarchy. This is especially relevant to the feld of Storage Class Memory (SCM), since it

is developed rapidly around the globe in the last decade.

Thus, creating a simulator that will be able to run on any computer or sever, and that

will be able to simulate a situation in which frames of memory are managed and mapped

to specifc levels of memory, using slight changes of the original paging algorithms as

shown in this thesis, would be benefcial for the development of this technology. To this

end, we built the DeMemory simulator framework [20] for the Aging paging algorithm as

well as for other algorithms that will be built in the future.

3.2 The DeMemory Code Structure

The DeMemory code documentation is presented as processed directly from the Doxygen

comments, and it is available in LaTeX and HTML as well [20]. The code is structured as

follow, and divided into three main sections:

 1. Classes: There are 3 diferent main classes in the code. The frst one is Frame,

which holds all of the frame information; The second is Algorithm_Data, which

holds all of the algorithm data (such as Hits, Misses, page table and victim list);

The last one is Algorithm, which contains a pointer to the algorithm data, and

includes the name of the specifc algorithm, which can be any kind of algorithm,

from FIFO to Aging, and a pointer to the algorithm function. In this fashion of

25

dividing the whole structure to those 3 elements we achieve a simple solution in

case we need to add a new algorithm to the simulator.

 2. Macros: The Macros specify the amount of memory levels which is in need. Each of

the levels has a macro itself (LEVEL_X) and the number of the level. In this case

it is easy to control the levels in a static fashion, which is very suitable for a

simulation of memory hierarchies. Also, those macros allow the programmer to

change the mapping of the levels easily for testing purposes.

 3. Functions: The functions are divided into 3 main subsections:

 3.1. Control functions: The functions which control the mechanism of the

simulator by looping for each page call; getting a random reference when needed;

providing all selected algorithms with the random input that was generated; and

if there is a need for space adds victimized frame from page table to the list of

victims.

 3.2. Output functions: The functions which print the help screen, the lists, the

detailed statistics, and the fnal summery of operation.

 3.3. Algorithm functions: The functions which are the paging algorithms

themselves, including the proxy functions which calculate the direct level to map

pages, and the removal and insertion of pages operators.

3.3 The DeMemory Simulator Operation

In Linux/UNIX systems, under GCC compiler, and using the Makefle platform, the usage

of the DeMemory simulator will be in the following form (Table 1):

>> ./dememory [algorithm] [num_frames] [show_process] [debug] [indexes] [page_refs]

26

Parameter Type Explanation

algorithm {A = Aging,

 B = N-level Aging}

Page replacement algorithm

num_frames {int > 0} Amount of page frames in the memory

show_process {1 or 0} Print page table after each reference is

processed

debug {1 or 0} Debugging output (verbose)

indexes {int > 0} Amount of unique page indexes

page_refs {int > 0} Amount of randomized page references

Table 1: The DeMemory Parameters, Types and Functionality.

3.4 Example of Usage

→ Run the simulation of the N-level Aging algorithm (which in this DeMemory simulation

N is constantly equal to 3 for convenience), with 10 frames in the memory, printing of the

page table during the process, without showing debug (verbose), using 100 unique page

indexes and 1000 randomized page references.

>> ./dememory B 10 1 0 100 1000

3.5 Analysis of Output

The output version, as shown in Figure 6, is based on a simulation of a 3 level memory

hierarchy with 10 frames in the memory for each level, when there are 100 unique page

indexes and 5 randomized page references. In this case there is a complete printing - both

debug and show-process options were selected. Figure 6 presents only the last steps of the

simulation.

>> ./dememory B 10 1 1 100 5

27

Figure 6: DeMemory Example of Output in an N-Level Memory-Aware Aging Paging
Algorithm (N = 3).

As shown in Figure 6, at the beginning the simulation prints the current status of

the pages in all of the memory levels. After the N-level Aging algorithm was run on the

frst level of the memory (Current Level: [0]), it was discovered that the frst page (index

= 0) was not referenced for 4 cycles (extra = 625000, count_zeros_before = 4) and the

algorithm calculated that it should be evicted to a lower level of memory. Therefore, the

page has been successfully evicted from the frst level of memory (level = 0 , REMOVED:

[1]) and successfully inserted into the second level of memory (level = 1, INSERT: [1]).

Afterwards, the algorithm checked the second and the third levels of memory to

determine if there was a need to upgrade or downgrade any of its pages like it has been

done in the frst level, but concluded there was nothing to do. At the end of the algorithm

28

execution the simulation reprinted the status of the memory and there was an option to

see that the actions actually took place.

At the end of the output the program presented the status and the statistics of the

simulation so far (and also when the simulation ended), including the number of Hits

(access to a page that is found in the memory system) and Misses (access to a page that is

not found in the memory system), the total Hit / Miss ratio and the time elapsed ever

since the program executed. Those statistics are constantly appended into a log fle at the

local directory (dememory.log).

3.6 Algorithms Benchmark

In order to verify our hypothesis regarding the benefcence of using the modifed memory-

aware Aging page replacement algorithm in multi-level memory hierarchy, and especially

when this memory hierarchy is a complex of regular DRAM and diferent types of Storage

Class Memory (SCM), we need to verify that the algorithm is resulting in a more efcient

Hit / Miss ratio.

Therefore, we tested and compared the two types of algorithms, while the frst was

running on a classic one-level memory (DRAM only), and the second was running on a 3-

level hierarchy as follows: a classic one-level memory and two extra memory levels with the

same volume (for accurate comparability measurements) as the DRAM. Those two extra

levels were simulating two diferent types of SCM – one which was 2 times slower than the

DRAM, and the other which was 3 times slower than the DRAM.

These architectures created a situation in which while the classic memory hierarchy

volume is C with V speed of reference, the complex 3-level memory hierarchy volume is 3C

with 0.5V speed of reference on average. The explanation of those parameters is simple:

Each addition of a memory level to the memory hierarchy (N) adds to the capacity of the

whole memory complex (Volume), but also slows the memory complex in average (Speed).

In this example that is the reason why the volume of the memory becomes 3 times bigger

29

(1+1+1 = 3) but also 2 times slower ((1+2+3)/3 = 2). Those calculations can be shown in

an equation form as the following (Equation 2, 3):

VolumeTotal=∑
i= 1

N

C i (2)

Speed Total=
∑
i=1

N

V i

N
 (3)

Therefore, it was crucial to verify that although some slowdown has occurred, in

various cases the N-level memory-aware Aging paging algorithm still delivers better

performance than the classic Aging paging algorithm (with no extra memory levels and

without memory-awareness).

3.7 Results and Analysis

As previously mentioned, the benchmark of the DeMemory simulator as shown in this

thesis has been performed on two diferent architectures, using several parameters. The

following graphs show this benchmark result, the Hit / Miss ratio, which will be presented

as a function of three variables: The amount of frames in memory (F), the amount of

unique page indexes (I) and the amount of page references (R). In each benchmark we set

two of those parameters to be fxed, and ranged the third parameter in two scales: The

frst scale ranged from 10 till 100 (Figure 7-9), and the second scale ranged from 1000 to 1

million (Figure 10-12). The purpose of those two scales is to examine the performance of

the simulation in normal usage scale and in High Performance Computing (HPC) scale.

The results are as followed:

• The Hit / Miss ratio as function of the amount of frames in memory (Between 10

and 100) shows that although the N-level memory-aware Aging paging algorithm

creates a better Hit / Miss ratio when the number of frames is low, as frames added

to the memory system there is an advantage to the classic 1-level Aging paging

algorithm (Figure 7). Those results also persist when the range of the amount of

30

frames in the memory rise to HPC levels (1e3 – 1e6), then the Hit / Miss ratio

becomes constant with a clear favor of the classic 1-level Aging paging algorithm

(Figure 10). However, although these results seems to present an advantage of the

classic 1-level Aging paging algorithm, it is worth noticing that it is impractical to

enlarge the DRAM to this kind of capacity because of its high cost – the price gap

between Storage Class Memory (SCM) and DRAM is about an order of magnitude

– meaning that it would be cost-inefective, and that the Hit / Miss ratio gap

between the two algorithms (~10%) is not big enough to justify that cost.

• The Hit / Miss ratio as function of the amount of unique page indexes (Between 10

and 100) shows that although the classic 1-level Aging paging algorithm creates a

better Hit / Miss ratio when the number of unique page indexes is the same as the

amount of frames in the memory (a situation that almost never happens), as unique

page indexes added to the system there is a clear advantage to the N-level memory-

aware Aging paging algorithm (Figure 8), as it results Hit / Miss ratio which is N

times better than the classic 1-level Aging paging algorithm (in this case, 3 times

better). Thus we can conclude that there is at least a linear proportion between the

amount of extra memory levels and the Hit / Miss ratio while using the N-level

memory-aware Aging paging algorithm. These results also persist when the range of

the amount of unique page indexes in the memory rises to HPC levels (1e3 – 1e6),

which then the Hit / Miss ratio becomes constant with clear favor of the N-level

memory-aware Aging paging algorithm, as the classic 1-level Aging paging

algorithm fails to deliver an acceptable Hit / Miss ratio (Figure 11), meaning the

gap is N times better at the least, and infnity better at the most.

• The Hit / Miss ratio as a function of the amount of page references (Between 10

and 100) shows that only when the amount of page references is equal or less to the

amount of frames in the memory the two algorithms results the same Hit / Miss

ratio, which is equal to zero (because every page insertion is a miss at the

beginning). Yet, when the amount of page references gets bigger than the amount of

31

frames in the memory there is a clear advantage to the N-level memory-aware Aging

paging algorithm (Figure 9), as it results Hit / Miss ratio which is N times better

than the classic 1-level Aging paging algorithm (in this case, 3 times better). These

results also persist when the range of the amount of page references in the memory

rises to HPC levels (1e3 – 1e6), which then the Hit / Miss ratio becomes constant

(Figure 12) and stays N times better than the classic 1-level Aging paging algorithm

(in this case, 3 times better). Thus we can conclude that there is a clear linear

proportion between the amount of extra memory levels and the Hit / Miss ratio

while using the N-level memory-aware Aging paging algorithm.

3.8 Comparison of Diferent N-Level Algorithms

In addition to the previous results, there was a need to examine and compare diferent

algorithms for the same system of N-levels, for a fxed N. To this end, we examined the

results of the N-level memory-aware Aging paging algorithm with intentional modifcation

where there is no direct link between the amount of zeros in the beginning of the page

referenced bits to the level of memory that that page should be evicted to.

As mentioned in chapter 2.7, based on the knowledge that the amount of zeros in

the beginning of the page referenced bits points to the amount of unreferenced past clock

ticks – and therefore on the page aging status – it was wise to evict the page straight to its

proportionate level of memory. In order to test the hypothesis that by forming a dynamic

pyramid hierarchy of both page and memory necessity it was possible to get the best

performances for a paging algorithm in an N-level memory hierarchy, we modify the

behavior of the algorithm to select diferent levels rather than the correct direct levels.

Specifcally, if a page at level 1 was directed towards level 2 in our original N-level

algorithm, it is actually redirected to level 3 and vice versa. Afterwards, we reexamined the

Hit / Miss ratio as function of the amount of page references (Figure 13) and discovered,

unsurprisingly, that there was a loss in performance in comparison to the correct

algorithm.

32

Figure 7: The Hit / Miss Ratio as Function of the Amount of Frames in Memory (F).

Figure 8: The Hit / Miss Ratio as Function of the Amount of Unique Page Indexes (I).

Figure 9: The Hit / Miss Ratio as Function of the Amount of Page References (R).

33

Figure 10: The HPC Hit / Miss Ratio as Function of the Amount of Frames in Memory.

Figure 11: The HPC Hit / Miss Ratio as Function of the Amount of Unique Page Indexes.

Figure 12: The HPC Hit / Miss Ratio as Function of the Amount of Page References.

34

Figure 13: The Hit / Miss Ratio as Function of the Amount of Page References including
the Hit / Miss Ratio for a Modifed Version of the N-Level Memory-Aware Aging Paging
Algorithm.

35

4 Conclusions and Future Work

4.1 Conclusions

Those benchmarks, results and analysis lead to the following conclusions:

1. In average, a complex of regular DRAM and diferent types of Storage Class

Memory (SCM) with the same size, will make the whole memory about N times

slower than the DRAM, but N times bigger than the DRAM.

2. There is a clear advantage to the N-level memory-aware Aging paging algorithm, as

it results Hit / Miss ratio which is N times better than the classic 1-level Aging

paging algorithm.

Therefore, because these two conclusions at least eliminate each others efect by

compensating the slowdown with at least the same growth of the Hit / Miss ratio, and

because of the fact that the price gap between SCM and DRAM is about an order of

magnitude, we can conclude that it would be benefcial to use the N-level memory-aware

Aging paging algorithm in multi-level memory hierarchy which include SCM in regular

computing systems as well as in High Performance Computing clusters.

4.2 Future work

This thesis opens a number of prospective directions for future research. One immediate

direction is to explore how the current N-level memory-aware Aging paging algorithm is

reacting when the memory levels are not in the same size or are not from the same class of

the current Storage Class Memories (SCM) which are in the market.

Finally, we also expect that in the near future the SCM will be a real and

widespread technology, meaning that investigating the real technology and comparing it to

the current simulation would be a fertile ground for further research and development.

36

5 References

 [1] Ulrich Drepper, What Every Programmer Should Know About Memory, 2007.

 [2] Ellis Horowitz, Sartaj Sahni, Susan Anderson-Freed, Fundamentals of Data Structures

in C, 1992.

 [3] J. von Neumann, First draft of a report on the EDVAC. Technical report, University

of Pennsylvania, 1945.

 [4] J. S. Vitter, E. A. M. Shriver, Algorithms for Parallel Memory, 1994.

 [5] Roman Dementiev, Lutz Kettner, Peter Sanders, STXXL: Standard Template Library

for XXL Data Sets, 2005.

 [6] Freitas, Richard, Winfried Wilcke, Bülent Kurdi, G. W. Burr, Storage Class Memory,

Technology and Use, In Tutorial, 6th USENIX Conference on File and Storage

Technologies, 2008.

 [7] Huang, C.Y., Storage Class Memory, Final Report – IEE5009: Memory Systems,

Institute of Electronics, National Chiao-Tung University, Fall 2012.

 [8] Hession David, Nigel Mc Kelvey, Kevin Curran, Storage Class Memory, International

Journal of E-Business Development IJED 4.1, 2013.

 [9] Burr, G.W., Virwani, K., Shenoy, R.S., Padilla, A., BrightSky, M., Joseph, E.A.,

Lofaro, M., Kellock, A.J., King, R.S., Nguyen, K. and Bowers, A, Large-scale

(512kbit) integration of multilayer-ready access-devices based on mixed-ionic-

electronic-conduction (MIEC) at 100% yield, In VLSI Technology (VLSIT),

Symposium on (pp. 41-42), IEEE, 2012.

 [10] Numonyx, The basics of phase change memory (PCM) technology, White Paper,

2010.

 [11] Shenoy, R.S., Gopalakrishnan, K., Jackson, B., Virwani, K., Burr, G.W., Rettner,

C.T., Padilla, A., Bethune, D.S., Shelby, R.M., Kellock, A.J. and Breitwisch, M.,

37

Endurance and scaling trends of novel access-devices for multi-layer crosspoint-

memory based on mixed-ionic-electronic-conduction (MIEC) materials, In VLSI

Technology (VLSIT), 2011 Symposium on (pp. 94-95), IEEE, June 2011.

 [12] Byrne, S, University develops PMC memory, a potential Flash killer, myce, 1

November 2007.

 [13] Freitas, Richard F., Winfried W. Wilcke., Storage-class memory: The next storage

system technology, IBM Journal of Research and Development 52.4.5: 439-447, 2008.

 [14] Chen, Y.C., Rettner, C.T., Raoux, S., Burr, G.W., Chen, S.H., Shelby, R.M., Salinga,

M., Risk, W.P., Happ, T.D., McClelland, G.M. and Breitwisch, M., Ultra-thin phase-

change bridge memory device using GeSb, In International Electron Devices Meeting

(pp. 777-780), December 2006.

 [15] Stroustrup Bjarne, Programming: Principles and Practice Using C++, Addison

Wesley, 2008.

 [16] Harvey M. Deitel, Paul Deitel, David R. Chofnes, Operating Systems, Prentice Hall,

3rd edition, 2003.

 [17] Abraham Silberschatz, Greg Gagne, Peter B. Galvin, Operating System Concepts,

Wiley, 9th edition, 2012.

 [18] Andrew S. Tanenbaum , Modern Operating Systems, Prentice Hall, 4nd edition,

2014.

 [19] Sudarshan, T. S. B., Rahil Abbas Mir, S. Vijayalakshmi, Highly efcient LRU

implementations for high associativity cache memory, Proceedings of 12th IEEE

International Conference on Advanced Computing and Communications, 2004.

 [20] Gal Oren, Project Supervisor: Dr. Leonid Barenboim, Project Report: DeMemory – A

Simulator for Multi-Level Memory System using Aging Algorithm, The Open

University of Israel, September 2015.

https://bitbucket.org/galoren/dememory

38

תקציר

זיכרונות המחשב – הזיכרון הראשי וזיכרון האחסון – נתפשים עד היום כמשאבים חד-ממדים ובלתי-מתוחכמים, עם מספר

תכונות פשוטות, כמו זמן גישה קבוע. בחלוף השנים תפישה זו הוכחה כשגוייה בתכלית, וכיום הבנה של מדרג הזיכרון

Storage Classיכולה להיות שימושית במטרה לשפר את הביצועים של אלגוריתם או מבנה נתונים. לדוגמה, ה-

Memory-או ה) SCM,הינו סוג של טכנולוגיה חדשה אשר מייצגת צורת כלאיים בין הזיכרון הראשי וזיכרון האחסון ,(

עם מאפיינים ייחודיים כך שזיכרון זה הינו בלתי-נדיף, זול במונחי עלות לסיבית, בעל זמני גישה מהירים הן עבור כתיבה

והן עבור קריאה, וכן הינו זיכרון אשר אינו מכיל חלקים נעים.

 כמכשירי זיכרון-אחסון מהירים מאוד המעוצבים על ידי מערכתSCMמערכות הפעלה עתידות להשתמש ב-

קבצים ומבני-נתונים, או לחילופין כקבצי זיכרון ראשיים עבור הדור הבא של תוכנות המחשב. בעתיד הנראה לעין ה-

SCMמתעתד לשנות את צורת תוכנות המחשב החדשות, את אופן הגישה לזכרון האחסון, ואת הדרך בה זיכרונות אחסון

)Memory Allocation Manager – MAM ובין מנהל הקצאות זיכרון ייעודי (SCMנבנים. על כן, שילוב בין ה-

אשר יאפשר למתכנת לשלוט באופן ידני בזיכרונות השונים שבמדרג הזיכרון, מתעתד להשיג רמה חדשה של ביצועים

 נדמית כגישה האופטימליתMAMעבור מבני-נתונים בעלי מודעות למדרג הזיכרון. עם זאת, על אף ששליטה ידנית ב-

לניהול מדרג זיכרון עם זיכרונות רבים, טכניקה זו עודה רחוקה מאוד מלהיות ממשית, והסיכויים שהיא תמומש עבור

– High Performance Computingהקודים הנוכחיים המשתמשים בפלטפורמות מחשוב עתיר ביצועים (

HPC(.הינם נמוכים למדי

 לתוך מערכת זיכרון ממשיתSCMמשמעות הנחת מוצא זו היא שהדרך המתקבלת ביותר על הדעת להציג את ה-

, תוך היעזרות בעקרונות היסוד של אלגוריתמי הדפדוף המוכריםMAMתהיה באמצעות מימוש גרסה אוטומאטית של ה-

עבור מדרג זיכרון סטנדרטי. הנחת היסוד שלנו היא שהשגת עֲבִירות ראויה בין רמות הזיכרון הינה בגדר האפשר תוך

שימוש ברעיונות האלגוריתמים המיושמים כיום במערכות הזיכרון הווירטואלי, וכן שההתאמה של אלגוריתמים אלו

ממדרג זיכרון סטנדרטי למדרג זיכרון עם ריבוי רמות זיכרון הינה אף היא בגדר האפשר.

במטרה להראות את הנחות היסוד שלנו חקרנו מספר אלגוריתמי דפדוף, ומתוכם סיננו את אלו שיכולים לעבור

התאמה מוצלחת ממדרג זיכרון סטנדרטי למדרג זיכרון מרובה רמות זיכרון. במהלך המחקר גילינו כי שימוש בהתאמה

 למדרג זיכרון מרובה רמות זיכרון מניב את הביצועים הטובים ביותרAgingמסויימת של אלגוריתם הדפדוף הידוע כ-

״) על מנת לנתחDeMemoryבמונחי ״יחס פגיעה-החמצה״. במטרה לאשרר השערות אלו בנינו מַדמֶה (העונה לשם ״ה-

את ביצועי האלגוריתמים שלנו, וכן על מנת לנתח באמצעותו אלגוריתמים נוספים שיתוכננו בעתיד.

תוכן עניינים

2..מימוש אלגוריתמים למבני נתונים במדרגי זיכרון 1

2...הקדמה: מודעות למדרג הזיכרון 1.1

STXXL...3מחקר קודם: שימושים בזיכרון – דפדוף מול ה- 1.2

Storage Class Memory...4זיכרון העתיד: ה- 1.3

Memory Allocation Manager...6מנהל הקצאות הזיכרון: ה- 1.4

8..שימושים של מבני נתונים במנהל הקצאות הזיכרון 1.5

9...אלגוריתמי דפדוף כמוצא מעשי 1.6

11..מימוש אלגוריתמי דפדוף במדרגי זיכרון 2

11...שימוש בעקרון הדפדוף במדרגי זיכרון 2.1

12...מכאניזם הדפדוף הבסיסי 2.2

12...אלגוריתם הדפדוף האופטימלי 2.3

14.. במדרג זיכרון רב-רמותNot Recently Usedאלגוריתם דפדוף ה- 2.4

17...במדרג זיכרון רב-רמות First-In-First-Outאלגוריתם דפדוף ה- 2.5

Not Frequently Used...............20ואלגוריתם דפדוף ה- Least Recently Usedאלגוריתם דפדוף ה- 2.6

21..במדרג זיכרון רב-רמות Agingאלגוריתם דפדוף ה- 2.7

DeMemory..25סימולטר ה- 3

25...מימוש אלגוריתמי דפדוף בעלי מודעות לזיכרון 3.1

DeMemory...25מבנה הקוד של סימולטור ה- 3.2

DeMemory...26תפעול סימולטור ה- 3.3

27..דוגמת שימוש 3.4

27...ניתוח הפלט 3.5

29..בחני ביצועים 3.6

30...תוצאות וניתוח הממצאים 3.7

32...השוואת אלגוריתמים שונים בעלי מודעות לזיכרון 3.8

36..מסקנות ומחקר עתידי 4

36...מסקנות 4.1

36..מחקר עתידי 4.2

37...סימוכין 5

האוניברסיטה הפתוחה

המחלקה למתמטיקה ומדעי המחשב

ייעולים באלגוריתמי ניהול

עבור מדרג זיכרון מרובה רמות

עבודה זו הוגשה כחלק מהדרישות לקבלת תואר

״מוסמך במדעים״ .M.Sc במדעי המחשב

באוניברסיטה הפתוחה

החטיבה למדעי המחשב

על-ידי

גל אורן

העבודה הוכנה בהדרכתו של ד"ר לאוניד ברנבוים

ובייעוצו המדעי של ד"ר ליאור עמר

2015דצמבר

