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Abstract

Memory and storage are often assumed to be unsophisticated, flat resources, with simple
properties, such as a constant access time. Over the years this assumption has been proven to be
wrong, and understanding of the memory hierarchy could be useful in order to enhance the
performance of an algorithm or a data structure. For example, the Storage Class Memory (SCM),
widely known as Persistent Memory, is a new technology which represents a new hybrid form of
storage and memory with unique characteristics, meaning a memory which is non-volatile, cheap in

per bit cost, has fast access times for both read and writes, and is solid state.

Operating Systems are likely use the SCM as either very fast block storage devices
formatted by file systems and databases, or as direct memory mapped “files” for the next generation
of programs. In the near future the SCM is predicted to modify the form of new programs, the
access form to storage, and the way that storage devices themselves are built. Therefore, a
combination between the SCM and a designated Memory Allocation Manager (MAM) that will
allow the programmer to manually control the different memories in the memory hierarchy will be
likely to achieve a new level of performance for memory-aware data structures. Although the
manual MAM seems to be the optimal approach for multi-level memory hierarchy management,
this technique is still very far from being realistic, and the chances that it would be implemented in

current codes using High Performance Computing (HPC) platforms is quite low.

This premise means that the most reasonable way to introduce the SCM into any usable
and popular memory system would be by implementing an automated version of the MAM using
the fundamentals of paging algorithms, as used for two-level memory hierarchy. Our hypothesis is
that achieving appropriate transferability between memory levels may be possible using ideas of
algorithms employed in current virtual memory systems, and that the adaptation of those

algorithms from a two-level memory hierarchy to an N-level memory hierarchy is possible.

In order to reach the conclusion that our hypothesis is correct, we investigated various
paging algorithms, and found the ones that could be adapted successfully from two-level memory
hierarchy to an N-level memory hierarchy. We discovered that using an adaptation of the Aging
paging algorithm to an N-level memory hierarchy results in the best performances in terms of Hit /
Miss ratio. In order to verify our hypothesis we build a simulator called “DeMemory simulator” for

analyzing our algorithms as well as for other algorithms that will be devised in the future.



1 Data Structure Algorithms Implementation in Memory

Hierarchies

1.1 Introduction: Memory Hierarchy Awareness

Often memory is assumed to be an unsophisticated, flat resource, with simple properties,
much like a constant access time [1]. Generally speaking, this is seldom the case, because
common computers often have five memory layers with different properties. Three of these
layers dwell on the processor chip, one layer is the RAM memory and one layer is the
physical memory, such as SSD and HDD (Figure 1). The layers on the processor chip are
referred to as L1 cache, L2 cache and L3 cache. L1 cache is a rather small piece of memory
with extremely high access time, used directly by the processor. L2 cache is slightly slower
and vastly larger than L1 cache. L3 cache is slower than L2 and L1 caches, and it is shared
by all cores. When accessing memory, the CPU will look in the main memory only after it
looks in L1 cache, L2 cache, and L3 cache. In the following chapters we will refer to this
memory hierarchy using the term “two-level memory hierarchy”, excluding the three cache
levels from our discussion, because of our sole interest in the RAM-HDD match.
ﬁ Modern Server
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Figure 1: The Memory Hierarchy and its Latency and Bandwidth Parameters (Rambus,

Storage

2015). The latency and bandwidth penalty between the two upper levels and the two lower
levels is about 2-3 orders of magnitude.

Understanding the memory hierarchy could be useful in order to enhance the

performance of an algorithm or a data structure [2]. Algorithms and data structures that



adjust to a specific memory organization are known as memory-aware oOr memory-
conscious. Algorithms and data structures that are planned to execute well with memory
unawareness, independently of the memory parameters and hierarchy are called memory-

oblivious. Design of memory-aware algorithms requires awareness of the memory hierarchy.

1.2 Previous Work: Usage of the Memory — Paging vs. STXXL

Operating Systems (OS) implement the virtual memory mechanism that extends the
working space for applications, mapping an external memory file (page/swap file) to
virtual addresses. This idea supports the Random Access Machine model [3| in which a
program has an infinitely large main memory. With virtual memory, the application does
not know where its data is located, whether in the main memory or in the swap file. This
abstraction does not have large running time penalties for simple sequential access

patterns: The OS is even able to predict them and to load the data ahead of time.

For more complicated patterns these remedies are not useful and even
counterproductive: The swap file is accessed very frequently; the executable code can be
swapped out in favor of unnecessary data; the swap file is highly fragmented and thus

many random I/O operations are needed even for scanning.

The OS cannot adapt to complicated access patterns of applications dealing with
massive data sets. Therefore, there is a need for explicit handling of external memory
accesses. The applications and their underlying algorithms and data structures should care

about the pattern and the number of external memory accesses (I/Os), which they cause.

Several simple models have been introduced for designing I/O-efficient algorithms
and data structures (also called external memory algorithms and data structures). The
most popular and realistic model is the Parallel Disk Model (PDM) of Vitter and Shriver

[4]. In this model, I/Os are handled explicitly by the application.

An I/O operation transfers a block of B consecutive elements from/to a disk to

minimize the latency. The application tries to transfer D blocks between the main memory



of size M bytes and D independent disks in one I/O step to improve bandwidth (Figure 2).

The input size is N bytes which is quite larger than M.
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Figure 2: Serial Disk Model (SDM) vs. Parallel Disk Model (PDM) ([5]).

The most common implementation of the PDM model can be found at the STXXL
project [5]. The core of STXXL is an implementation of the C++ standard template
library STL for external memory (out-of-core) computations, i.e., STXXL implements
containers and algorithms that can process huge volumes of data that only fit on disks.
While the compatibility to the STL supports ease of use and compatibility with existing
applications, another design priority is high performance. The performance features of
STXXL include: Transparent support of multiple disks, variable block length, overlapping

of I/O and computation, and prevention of OS file buffering overhead.

1.3 Future Memory: Storage Class Memory

Storage is considered to be a mechanical HDD that supplies virtually unlimited capacity,
when compared to DRAM, and it is also perpetual, which means that data is not lost if
the computer happens to crash or disconnect from electricity. The issue with hard drives is
that in various situations they are unable to supply data to applications with the sufficient

speed [6].

Storage Class Memory (SCM) proposes to minimize or even close the widening gap
between CPU processing speeds, the need to rapidly transfer big data blocks, and the read-

write speeds suggested by HDD reliant systems. The SCM |[7], widely known as Persistent



Memory, is a technology which represents a new hybrid form of storage and memory with
unique characteristics, meaning a memory which is non-volatile, cheap in a per bit cost,

has fast access times for both read and writes, and is solid state.

The SCM has a unique mechanism. Created out of flash-based NAND, SCM is a
new form of storage that can provide a middle step between high-performance DRAM and
cost-effective HDDs (Figure 3). It may very well provide read performance analogous to
DRAM (perhaps even better in some cases), and write performances that are significantly
faster than HDD technology (factors of hundreds better than HDD and even beyond).
Also, it is predicted that the production costs of SCM and HDD will be broadly similar by

the end of this decade [§].
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Figure 3: The SCM in Context of the Available Memories (IMEX Research, 2011).

Those new SCM storage-memory systems connect to memory slots in a server and
are mapped and accessed in the same fashion as the memory, even though they are slightly
slower, and they can be addressed atomically at either the byte or the block level, unlike
previous eras of storage technology. The SCM can be used directly as execution memory or
data storage memory. The current SCM products include the improved Flash [9], the
Phase Change Memory (PCM) [10], the Magnetic RAM (MRAM) [11], the Solid
Electrolyte RAM — Nano-Tonic RAM [12], the Ferroelectric RAM (FRAM) [13] and the

Memristor [14].



Operating Systems are likely to use the SCM as either very fast block storage
devices formatted by file systems and databases, or as direct memory mapped “files” for
next generation of programs. In the near future the SCM is predicted to modify the form
of programs, the access form to storage, and the way that storage devices themselves are
built. Therefore, a combination between SCM and the existing memories, using a
new memory allocation manager that will act like STXXL, will be likely to achieve

a new level of performance for memory-aware data structures. Such a memory system
with different kinds of memory speeds, access fashions and volumes is modeled by a
collection (sorted according to memory speeds) of N arrays, such that each array

represents a memory level, where level 1 is the fastest and level N is the slowest.

1.4 The Memory Allocation Manager (MAM)
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Figure 4: The Memory Allocation Manager (MAM) Diagram of Usage.
The Memory Allocation Manager (MAM), based on the idea of C language malloc [15] and

STXXL allocation modules, will take the power of the memory management from the
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virtual memory mechanism and will deliver it to the programmer. In this scenario there is
no common dichotomy between a single memory and a single storage, but a plurality of
memories, which are the new MAM, by the instructions from the application, will take

charge of them.

The programmer will have the option to control those memories — serially or in

parallel — in order to achieve the best performance possible.

void *ptrl, *ptr2
ptrl = alloc_cache_mem(...) ; free_ cache_mem(ptrl)

ptr2 = alloc_block_mem(...) ; free_block_mem/(ptr2)

In each of those categories the programmer will be able to set three elements:
1. The amount of memory the application needs (100MB, 1TB etc.) — Mandatory.

2. The speed degree of the memory (Fast, Medium, Slow) which depends on two

factors:
2.1.  The physical distance between the CPU and the memory.

2.2.  The type of memory (RDR vs. DRAM in the cache line access category or

Storage Class Memory vs. HDD in the block access memory category).

3. A pointer to an opposite type of allocated memory, which will create a
synchronization between the current allocation and the previous one in a paging

style fashion — Optional.
void *ptrl, *ptr2
ptrl = alloc_block_mem(1TB, Slow, ptr2) | free_block _mem(ptril)

ptr2 = alloc_ cache _mem(100MB, Fast, ptrl) | free_cache_mem/(ptr2)



First, a data structure (hash table, in this example) will be created on the chosen memory,
and it will be specified how much memory should this data structure use from its main

memory type.
slow ht = ht_create(500GB, ptrl1)

fast_ht = ht_ create(50MB, ptr2)

After the initiation of the cache line access memories and the block access memories

it will be possible to use the different memories.
» Insert: Insertion of a key-value arguments to a specific type of memory.
* (Get: Get a hash value of specific key from a specific type of memory.

* Remowe: Remove a specific value of specific key from a specific type of memory.

Insert(key, value, Fast HT)
Get(“Don Draper”, Slow_ HT)

Remove(“Dick Whitman”, Fast_ HT)

At the end of use, the allocated hash tables memories should free themselves by a
free command. Note, that this is not a de-allocation of the main memories, but just of the

hash table that is allocated on it.

Free(Fast_HT, Slow HT)

1.5 Data Structures Usage of the Memory Allocation Manager

There are clear benefits of using the Memory Allocation Manager (MAM) API at the

design and implementation stage of any data structure, which needs to handle massive



data sets. For example, here are five possible options to use the MAM to optimize hash

tables performance.

1.

Given that the keys are arranged in a list form, there is an option that the first
immediate key will be stored in the fastest memory available, and as far as the list

expands, the other keys will be stored in slower memories.

Using the parallel fashion of the memory manager, there is an option to check for a
match to the hash function result in all the different memories at once, and by that

to create a parallel access to the different serial memories.

Start filling the fastest memory with the hash function results, and only when it
reaches its capacity continue to the slower memory. This memory allocation fashion

can be repeated to the slowest memory available.

During the usage of the hash table, the data structure will create a dynamic
histogram of the most and the least called keys and by that will rearrange their

locations in the memories, from the fastest to the slowest.

When the keys are already known, the data structure will create a histogram of the
keys, and will divide the most common keys to the fastest memories and the rarest

keys to the slowest memories.

Therefore, it seems reasonable to re-modify the data structures to use those kinds of

paradigms using the MAM. However, this kind of solution arises a problem, which lies

within the solution. The reason for this problem is that the algorithms require not only to

re-modify the memory platform and the access to it, but also the code that is currently

based on two-level memory hierarchy. Thus a practical resort, which will represent a

compromise, is in need.

1.6 Paging Algorithms as a Practical Resort

Although the Memory Allocation Manager seems to be the best approach for multi-level

memory hierarchy management, this technique is still very far from being realistic, and the

9



chances that it would be implemented in current codes using High Performance Computing
(HPC) platforms is quite low. Considering the following reasons, it seems that the MAM
will only stay on paper (or in code editors) and will not be used in most of current and

near future systems. The reasons are:

1. A rewrite of source codes in a way that will be suitable to work with the MAM is
not realistic, specifically and especially for HPC usages. Most of the research centers
which use large computer clusters have programs that used to be operational for
ages and are very big, complex and sustainable. Hence, the solution of rewriting the
whole code and redefining the data structures to use the MAM is not possible, and
can be efficient only for several specific application that are written today, yet not

for past applications.

2. Because Storage Class Memory (SCM) is breakthrough technology, it would not be
reasonable to wait for several more decades and see if people will change their codes.
Instead, upgrading HPC clusters to a new level of sophistication and performance

without any need to rewrite the code or manage the memory would be wiser.

3. Even the previous platforms, such as STXXL, did not become widespread among
developers, although those platforms were introduced in times when memory layers
were actually more expensive than current times. This indicates that using MAM

would not be beneficial today for most purposes.

Therefore, an implementation of a multi-level memory hierarchy management
should not incur any changes in the data structures. This premise means that the most
reasonable way to introduce the SCM into any usable and popular memory system would
be by implementing an automated and not explicit version of the MAM. Thus, introducing
the MAM concepts and the multiple memory levels awareness into the classic paging
algorithms can be a good solution, which will not be a big compromise. This idea can be
achieved by introducing a new automated layer that will select the most appropriate
memory levels for allocating space, and that will move data between memory levels for

optimizing performance in the fashion of paging algorithms.

10



2 Page Replacement Algorithms Implementation in Memory

Hierarchies

2.1 Usage of Paging Concept in Memory Hierarchies

As mentioned in the previous chapter, there are clear benefits in using the Memory
Allocation Manager (MAM) API at the design and implementation stage of any data
structure which needs to handle massive data sets, especially hash tables. Also, we offered
five conceivable options to use it in order to optimize those hash tables performance.
Among those five options, the most reasonable and logical option for optimization, which
also matches the current paradigm in a two-level memory hierarchy, is the one in which
the following hold: It is given that the keys are arranged in a list form; There is an option
that the first immediate key will be stored in the fastest memory available; And as far the

list expands, the other keys will be stored in the slower memories.

However, for supporting that kind of optimization, the MAM alone is not sufficient
because the hash table implementation requires a collision resolution policy. This means
that in some point there is going to be a shortage of memory space and there will be a
need to make transfers between the different kinds of memory, from the faster ones to the
slower ones, or the opposite. We also argued that transformation of the code of most
current High Performance Computing (HPC) services for the MAM architecture is not
realistic. Therefore, we propose to employ an additional automated and not code explicit
layer that determines the appropriate levels in the memory hierarchy for placing data. This
layer receives memory allocation requests (without level specifications), and determines the
appropriate memory level in which allocations will be made. In addition, this layer moves

data between the different memory levels in order to optimize performance.

Our hypothesis is that achieving that kind of transferability between memory levels
may be possible using ideas of algorithms employed in current virtual memory system, and
that the adaptation of those algorithms from a two-level memory hierarchy to an N-level

memory hierarchy may be possible. In that notion, each virtual memory page is a hash
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table entry (or entries), and each of the virtual memory swaps can be done like the MAM
would do if it would implemented with knowledge of the appropriate levels, regardless of

the access fashion.

In order to reach a conclusion that our hypothesis is correct, we needed to clarify which
of the paging algorithms could be adapted successfully from a two-level memory hierarchy
to an N-level memory hierarchy. For doing so, we have to thoroughly investigate the

current paging mechanism and the main paging algorithms.

2.2 Basic Paging Mechanism

It is widely known [16] [17] [18], that an Operating System has to select a page to evict
from memory to create a space for the page that has to be inserted in, when a page fault
happens. If the page has not been altered, the copy on the hard drive is already up to date,
so no rewrite is necessary, and the page to be read in just overwrites the page being
removed. If, however, the page to be removed has been modified while in memory, it must

be rewritten to the hard drive to keep the hard drive copy updated.

Although it is possible to select a random page to be removed at each page fault,
system performance would benefit greatly if a page that is not massively used is picked up.
If a massively used page is evicted, it will apparently have to be brought back in soon,
resulting in unnecessary overhead. A lot of scientific research has been performed on the

subject of page replacement algorithms, both theoretical and experimental.

2.3 The Optimal Page Replacement Algorithm

The optimal prospective page replacement algorithm is simple to describe but cannot be
implemented, thus there is no expectancy that usage of a simply described paging

technique in N-level memory hierarchy will match the theoretical results.

The optimal page replacement algorithm is the one in which the following hold: When
a page fault happens, some series of pages is in the memory system. One of these pages

12



will be referenced on the upcoming instruction. The pages that have not been referenced
may be non-referenced even after unlimited amount of instructions later. Each page can be
tagged with the amount of instructions that will be executed prior to the time that that
page is first referenced. Simply, the optimal page algorithm evicts the page with the

highest tag.

The only problem with the optimal algorithm is that it is unimplementable, because at
the moment of a page fault the Operating System (OS) has no information about the time
when each of the pages will be referenced next. But, using a simulator which will keep
track of all page references, it is possible to execute an optimal page replacement on the

second run by using the page reference database accumulated during the first run.

Using this method it is possible to compare the performance of implementable
algorithms with the best possible one. If for instance an OS accomplishes achieving a
performance of about 10% worse than the optimal algorithm, effort spent in searching for a
better algorithm will produce at most a 10% improvement. To prevent possible confusion,
it should be stated that this database of page references refers only to the one simulation
that has just been measured and then with only one particular input. The page
replacement algorithm derived from it is therefore specific to that one simulation and input
data. Of course, despite the fact that this method is useful for evaluating page replacement
algorithms, it has no usage in practical systems. In the sequel we will present algorithms

that are useful on real systems, either with two-level or N-level memory hierarchies.

It is important to mention that in hash table insertions we sometimes can predict the
optimal page replacement at the first run using an analysis on the entries themselves, but
it is not always guaranteed that that kind of analysis will be possible or plausible.
Therefore, the comparison method between the first and the second run will probably be
more effective to discover which is the optimal paging algorithm who suits best to the
specific characterization of the insertion to the hash table. But, because this is not
practical for real systems we will present modifications to the current two-level memory

page replacement algorithms and will transform them to N-level algorithms.

13



2.4 The N-Level Not Recently Used (NRU) Page Replacement Algorithm

In order to let the Operating System gather meaningful statistical information about which
pages are being referenced and which ones are not, most computers with a virtual memory
mechanism have two status bits bound to each page. The R bit is set every time the page
is referenced (either read or written). The M bit is set every time the page is written to.
The R and M bits are included in each page table entry (Figure 5), and they must be
updated on every memory reference, therefore it is necessary that they are set by the
hardware. Whenever a bit is set to 1, it stays in that condition until the OS resets it to 0

in software.

Caching
disabled Modified Present/absent

F— /
/ Page frame number
\ \

Referenced Protection

Figure 5: The Page-Table Entry (BSODTutorials, 2013).

The referenced and modified bits are usable to build a straightforward paging algorithm
in which the following hold: When a process starts to run, the R and M page bits for all of
its pages are set to 0 by the OS. On each clock interrupt, the operation system clears the
R bit, to differentiate pages that have been referenced lately from those that have been
not, but do not clear the M bit because this data is necessary to understand whether the
page has to be rewritten to the disk or not. Whenever a page fault happens, the OS checks
all the pages and splits them into 4 subsections based on the present values of their R and
M bits, in which the following hold: Subsection 0: not referenced, not modified; Subsection
1: not referenced, modified; Subsection 2: referenced, not modified; and subsection 3:

referenced, modified.

The NRU (Not Recently Used) algorithm evicts some page from the lowest numbered
nonempty subsection. Therefore it is obvious that the meaning of the algorithm is that it is
better to evict a modified page that has not been referenced in at least one clock interrupt

than a clean page that is used massively. Thus, the central attractiveness of the NRU

14



paging algorithm is that it is very conceivable, does not require too many resources to

implement, and gives a performance that may be adequate even though not optimal.

Therefore, the transition of this algorithm to an N-level memory hierarchy model is
fairly simple, because it only requires each level of memory to set a different clock tick
rate. In this hypothesis, the clock tick rate needs to be proportionate to the access speed of
the specific level of memory, and the pages will “diffuse” from one layer of memory to the
other by demand. By this division of rates it is possible to get a uniformed removals of
modified pages that have not been referenced over the N-level memory hierarchy (L = 1:

Highest, . = N: Lowest).

Formulation of the NRU algorithm for N-level memory hierarchy:

* Set memory levels to N (ML = N).
* Set current memory level pointer to the highest (L = 1).

1. Insertion of a new page:

1.1. If the current memory level pointer is higher than the lowest memory level

(L > ML) :
1.1.1. Return False. /* Recursion Termination */
1.2. Call to the page.
1.3. If the page exists in the memory / storage:
1.3.1. Check if placing in the L-level of memory is possible.
1.3.2. If placement possible:
1.3.2.1. Place page at the L-level of memory.
1.3.2.2. Return True. /* Recursion Termination */

1.3.3. Else If placement impossible:

15



1.3.3.1. Remove the Not Recently Used page.
1.3.3.2. Place the page instead of the removed page.

1.3.3.3. Do Insertion of the Not Recently Used page to a lower

level (L = L+1) /* Recursion Invocation */
1.4. Else If page does not exist in the memory / storage:

1.4.1. Return False. /* Recursion Termination */

2. Call to a page:
2.1. Calculate the addressing of the page in the memory / storage.
2.2. If page found:
2.2.1. Return Real Addressing.
2.3. Else If page was not found:

2.3.1. Return False.

3. Remove of a specific page:
3.1. Store the page in a temporary storage.
3.2. Free the addressing of the page.

3.3. Return the page from the temporary storage.

4. Update of an existing page (by the OS5):
4.1. If Read / Write action performed on the page:
4.1.1. Set R bit to 1 (R = 1).
4.2. If Modification action performed on the page:
4.2.1. Set M bit to 1 (M = 1).
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4.3. If clock interrupt:

4.3.1. Set R bit to 0 (R = 0).

2.5 The N-Level First-In-First-Out (FIFO) Page Replacement Algorithm

The First In First Out page replacement algorithm (also known as FIFO) evicts the page
that aged in the Operating System (OS) for the longest period of time. The OS follows
after the arrangement in which pages are placed in the main memory. When there is a
need to evict a page, the algorithm selects the one that aged in the main memory for the
longest period of time. Intuitively, it is plausible that the selected page for eviction has had

its opportunity to be referenced and it is time to give another page that opportunity.

The problem with the first-in-first-out algorithm is that it can replace massively
used pages too, which would be a very unfortunate selection, because the page would be
called back to main memory almost at the same time it was evicted — a situation that will
increase the page-fault rate. This poor chain of events can be controlled and eliminated by
implementing FIFO with a referenced bit for each page and evicting a page only if its
referenced bit is set to zero. The second-chance variation of FIFO do so by checking the
referenced bit of the most aged page in the following way: If the R bit is equal to 0, the
second-chance variation instantly chooses that page for eviction. But, if the R bit is equal
to 1, the algorithm sets the bit as 0, and moves the page to the tail of the FIFO queue. By
doing so, a page of this kind is handled basically in the same way as a new arrival page.
Gradually, the page moves towards the head of the queue. At the time when the page
arrives at the head, it will be chosen for eviction only if the referenced bit is equal to O.
Active pages — in which their R bits are still equal to 1 — will be chosen to go back to the

tail of the list, and therefore they will remain in main memory.

The clock page replacement algorithm, which actually results in the same outcome
as the second-chance page replacement algorithm, organizes the pages in a cyclic list
instead of a regular list. At every occasion when a page fault happens, a list pointer

revolves around the cyclic list in the same fashion as the spin of a hand of the clock. At
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the time a page's R bit is equal to 0, the pointer is moved to the next part of the list,
imitating the transfer of this page to the back of a FIFO queue. The clock page
replacement algorithm sets fresh arrivals in the first page it comes across with the R bit

equals to 0.

Therefore, the adaptation of this algorithm (with the second-chance and clock page
replacement strategy) to an N-level memory hierarchy model requires a gradual eviction of
pages to a lower level of memory. When the referenced bit of the oldest page is off, the
algorithm should immediately select that page for replacement. At that stage, the
algorithm will need to decide to which level of memory it will be the best to evict the page.
Based on the reasonable assumption that the faster the level of memory is, the better it
will be to place the evicted page to; and based on the knowledge that the upper levels of
memory are not an option for eviction, the algorithm will try first to transfer the selected
page of a level i to the (i+1)-level of memory. In case of failure to transfer the page due to
a full capacity situation in the (i+1)-level, the algorithm will try to place the page in a

lower level of memory (i+2, i4-3, etc.) until the eviction process succeeds.

Formulation of the FIFO algorithm for N-level memory hierarchy:

*  Set memory levels to N (ML = N).
* Set current memory level pointer to the highest (L = 1).
1. Insertion of a new page:

1.1. If the current memory level pointer is higher than the lowest memory level

(L > ML) :
1.1.1. Return False. /* Recursion Termination */
1.2. Call to the page.
1.3. If the page exists in the memory / storage:

1.3.1. Check if placing in the L-level of memory is possible.
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1.3.2. If placement possible:
1.3.2.1. Place the page at the L-level of memory.
1.3.2.2. Return True. /* Recursion Termination */
1.3.3. Else If placement impossible:

1.3.3.1. If the reference bit of at least one of the pages is set to 0

(R = 0):
1.3.3.1.1. Remove a page with reference bit set to 0.
1.3.3.1.2. Place the page instead of the removed page.

1.3.3.1.3. Do Insertion of the page with reference bit set to

0 to a lower level (L = L+1). /* Recursion Invocation */

1.3.3.2. Else If the reference bit of all of the pages is set to 1 (R =

1):

1.3.3.2.1. Do Insertion of the page to a lower level (L =

L+1). /* Recursion Invocation */
1.4. Else If page does not exist in the memory / storage:

1.4.1. Return False. /* Recursion Termination */

2. Call to a page:
2.1. Calculate the addressing of the page in the memory / storage.
2.2. If page found:
2.2.1. Return Real Addressing.
2.3. Else If page was not found:

2.3.1. Return False.
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3. Remove of a specific page:
3.1. Store the page in a temporary storage.
3.2. Free the addressing of the page.

3.3. Return the page from the temporary storage.

4. Update of an existing page (by the OS5):

4.1. If Read / Write action performed on the page:
4.1.1. Set R bitto 1 (R =1).

4.2. If the page reached to the head of the FIFO queue and the page reference

bit is on (R = 1):

4.2.1. Turn off the reference bit (R = 0) and moves the page to the tail of

the FIFO queue.

2.6 The Least Recently Used (LRU) and Not Frequently Used (NFU Page
Replacement Algorithms

A satisfactory estimation to the best algorithm possible relies on our knowledge that pages
that have been referenced massively in the near past will apparently be referenced
massively again in the foreseeable near future. In contrast, pages that have not been
referenced massively for a long time will seemingly remain not referenced for prolonged
time. This notion proffers an implementable algorithm: When a page fault happens, evict
the page that has not been referenced for the most prolonged time. This idea is called

Least Recently Used (LRU) paging.

Despite the fact that LRU is theoretically implementable, it is by no means
inexpensive. To completely put LRU into practice, it is essential to keep a data structure —
such as a linked list — that holds all of the pages of the memory system, with the Most

Recently Used (MRU) page at the beginning and the LRU page at the end. The problem is
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that the list necessarily has to be updated on each memory reference, all the time.
Searching for a page in the list, erasing it, and then transferring it to the beginning of the
list is a very time consuming activity, even if it is was implemented in hardware (assuming

that such hardware could even be built).

Although there are two LRU algorithms that are implementable in theory [19],
there are no machines (except for some small portion of recent computers) that have the
appropriate hardware for those algorithms, so there is no concrete benefit in using them.
Therefore, there is a need for an algorithm that could be implemented in software. One of
the possible algorithms is known as the Not Frequently Used (NFU) algorithm. In this
algorithm, a counter is attached to each of the pages, when those counters are initially
equal to zero. At every clock interrupt, the OS inspects all the pages in the memory
system. For every page the algorithm sums the reference bit (which equal to 0 or 1), and
in this way it is possible to get a histogram of how often each of the pages has been
referenced. Obviously, when a page fault happens, the page with the smallest counter value

is selected for eviction.

The major difficulty with the NFU algorithm is that it is designed to remember all
of the information without any option to erase the counters when there is such a need,
which consequently may result the OS to evict referenced and crucial pages instead of
pages that have been used in the past, but are not used any more. Luckily, a slight
improvement to the NFU algorithm enables it to emulate LRU sufficiently well. This

improvement of the NFU algorithm is also known as the Aging algorithm [16] [17] [18].

2.7 The N-Level Aging Page Replacement Algorithm

The Aging algorithm is a small modification of Not Frequently Used algorithm which
makes it possible to simulate Least Recently Used algorithm quite well. Instead of only
incrementing the counters of pages referenced, the variation has two parts: First, the
counters are shifted right once before the R bit is inserted, meaning that there is actually a

division by 2 of the represented decimal number. Second, the R bit is inserted to the

21



leftmost bit, instead of inserting it to the rightmost bit. For instance, if a page has
referenced bits 1,1,0,0,0 in the past 5 clock ticks, its referenced counter will look like this:
10000000, 11000000, 01100000, 00110000, 00011000. When a page fault occurs, the page
whose counter is the lowest is removed. It is clear that a page that has not been referenced
for about K clock ticks will have K leading zeros in its counter (like the referenced counter
in the example at the fifth clock tick which has 3 leading zeros after 3 non-referenced clock
ticks), and therefore will have a lower value than a counter that has not been referenced

for K-1 clock ticks.

The transition of the Aging algorithm to an N-level memory hierarchy model can
even add another level of sophistication and optimization, especially because of the
existence of a linear proportion between the degradation of the referenced bits and the
amount of time that a specific page has not been in use. In this hypothesis, unlike in the
other N-level memory hierarchy paging algorithms adaptations and adjustments shown
before, there is an interesting phenomenon. Specifically, there is a possibility to create a
direct link between the amount of zeros in the beginning of the page referenced bits to the

level of memory that that page should be evicted to.

Based on the knowledge that the amount of zeros points to the amount of unreferenced
past clock ticks — and therefore on the page aging status — it would be wise to evict the
page straight to its proportionate level of memory. Hence, by forming a dynamic pyramid
hierarchy of both page and memory necessity it becomes possible to get significantly better
performances for a paging algorithm in an N-level memory hierarchy. Therefore, we

suggest that the modified Aging paging algorithm will best suit our goal.

Formulation of the Aging algorithm for N-level memory hierarchy:

* Set memory levels to N (ML = N).

* Set current memory level pointer to the highest (L = 1).
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1. Insertion of a new page:

1.1. If the current memory level pointer is higher than the lowest memory level

(L > ML) :
1.1.1. Return False. /* Recursion Termination */
1.2. Call to the page.
1.3. If the page exists in the memory / storage:
1.3.1. Check if placing in the L-level of memory is possible.
1.3.2. If placement possible:
1.3.2.1. Place page at the L-level of memory.
1.3.2.2. Return True. /* Recursion Termination */
1.3.3. Else If placement impossible:
1.3.3.1. Find the page with the lowest referenced counter:

1.3.3.1.1. Remove the page with the lowest referenced

counter.
1.3.3.1.2. Place the page instaed of the removed page.

1.3.3.1.3. Do Imsertion of the page with the lowest
referenced counter to the proportionate level of memory
based on the amount of the zeros in the beginning of the

page reference bits (Equation 1).
/* Recursion Invocation */

B z Amount of Initial Zero Bits

B [Z Amount of Reference Bitsl
ML

L

1.4. Else If page does not exist in the memory / storage:

1.4.1. Return False. /* Recursion Termination */
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2. Call to a page:
2.1. Calculate the addressing of the page in the memory / storage.
2.2. If page found:
2.2.1. Return Real Addressing.
2.3. Else If page was not found:

2.3.1. Return False.

3. Remove of a specific page:
3.1. Store the page in a temporary storage.
3.2. Free the addressing of the page.

3.3. Return the page from the temporary storage.

4. Update of an existing page (by the OS5):
4.1. If Read / Write action performed on the page:
4.1.1. Set R bit to 1 (R = 1).
4.2. If clock interrupt:
4.2.1. Right Shift one bit to all of the pages counters.

4.2.2. Add the R bit to the leftmost bit of all of the pages counters.
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3 The DeMemory Simulator

3.1 Implementation of Memory-Aware Paging Algorithms

As a consequence of our hypothesis regarding the generalization needed to transfer the
classic Aging page replacement algorithm to be applicable to multiple levels of memory,
the immediate goals are to implement the idea of the Aging algorithm to an N-level
memory hierarchy model, and to create a standard simulation for researchers around the
world for further research and inspection of the relatively new field of multi-level memory
hierarchy. This is especially relevant to the field of Storage Class Memory (SCM), since it

is developed rapidly around the globe in the last decade.

Thus, creating a simulator that will be able to run on any computer or sever, and that
will be able to simulate a situation in which frames of memory are managed and mapped
to specific levels of memory, using slight changes of the original paging algorithms as
shown in this thesis, would be beneficial for the development of this technology. To this
end, we built the DeMemory simulator framework [20] for the Aging paging algorithm as

well as for other algorithms that will be built in the future.

3.2 The DeMemory Code Structure

The DeMemory code documentation is presented as processed directly from the Doxygen
comments, and it is available in LaTeX and HTML as well [20]. The code is structured as

follow, and divided into three main sections:

1. Classes: There are 3 different main classes in the code. The first one is Frame,
which holds all of the frame information; The second is Algorithm Data, which
holds all of the algorithm data (such as Hits, Misses, page table and victim list);
The last one is Algorithm, which contains a pointer to the algorithm data, and
includes the name of the specific algorithm, which can be any kind of algorithm,

from FIFO to Aging, and a pointer to the algorithm function. In this fashion of
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dividing the whole structure to those 3 elements we achieve a simple solution in

case we need to add a new algorithm to the simulator.

2. Macros: The Macros specify the amount of memory levels which is in need. Each of
the levels has a macro itself (LEVEL X) and the number of the level. In this case
it is easy to control the levels in a static fashion, which is very suitable for a
simulation of memory hierarchies. Also, those macros allow the programmer to

change the mapping of the levels easily for testing purposes.
3. Functions: The functions are divided into 3 main subsections:

3.1. Control functions: The functions which control the mechanism of the
simulator by looping for each page call; getting a random reference when needed;
providing all selected algorithms with the random input that was generated; and
if there is a need for space adds victimized frame from page table to the list of

victims.

3.2.  Output functions: The functions which print the help screen, the lists, the

detailed statistics, and the final summery of operation.

3.3. Algorithm functions: The functions which are the paging algorithms
themselves, including the proxy functions which calculate the direct level to map

pages, and the removal and insertion of pages operators.

3.3 The DeMemory Simulator Operation

In Linux/UNIX systems, under GCC compiler, and using the Makefile platform, the usage

of the DeMemory simulator will be in the following form (Table 1):

>> ./dememory [algorithm| [num frames| [show process| [debug| [indexes| [page refs]
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Parameter Type Explanation
algorithm {A = Aging, Page replacement algorithm
B = N-level Aging}
num_frames {int > 0} Amount of page frames in the memory
show process {1 or 0} Print page table after each reference is
processed
debug {1 or 0} Debugging output (verbose)
indexes {int > 0} Amount of unique page indexes
page refs {int > 0} Amount of randomized page references

Table 1: The DeMemory Parameters, Types and Functionality.

3.4 Example of Usage

— Run the simulation of the N-level Aging algorithm (which in this DeMemory simulation
N is constantly equal to 3 for convenience), with 10 frames in the memory, printing of the
page table during the process, without showing debug (verbose), using 100 unique page

indexes and 1000 randomized page references.

>> ./dememory B 10 1 0 100 1000

3.5 Analysis of Output

The output version, as shown in Figure 6, is based on a simulation of a 3 level memory
hierarchy with 10 frames in the memory for each level, when there are 100 unique page
indexes and 5 randomized page references. In this case there is a complete printing - both
debug and show-process options were selected. Figure 6 presents only the last steps of the

simulation.
>> ./dememory B 10 1 1 100 5
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AGING_N Algorithm
LEVEL: [@] - Frames in Mem: 18, Refs to Mem: 1@@, Hits: @, Misses: 4, Hit Ratio: 0.000000, [Max Page calls: 5]
8 9

Frame # : ] 1 2 3 4 5 6 7

Page Ref : 7 73 72 23 _ _ _ _ _ _
Extra H 1250000 2500000 5000000 ] ] ] ] ] [} Q
Time i 48296258 48296258 48296258 48296258 48296258 48296258 48296258 48296258 48296258 48296258
Frame # : %] 1 2 3 4 5 6 7 8 9
Page Ref : - - _ - - - - - _ -
Extra H ] 0 ‘] '] ] ] e -] 0 Q
Time : 48296258 48296258 48296258 48296258 48296258 48296258 48296258 48296258 48296258 48296258
Frame # : ] 1 2 3 4 5 6 7 8 9
Page Ref : _ _ _ _ _ _ _ _ _ _
Extra H ] 0 Q '] ] ] ] ] 0 Q
Time 1 48296258 48296258 48296258 48296258 48296258 48296258 48296258 48296258 48296258 48296258

>>>>>>>>>>>>>>> Current Level: [0]

framep—->index: [@], framep-»extra:[625000], count_zeros_before: [4]
sk calculate_direct_level swswx: 1

sk [00001000] sokkk

INDEX: [@]

INDEXES [@]:[e]

sk REMOVED @ [ 1] 5ok

INSERT-IN ::: framep->index:[@], framep->page:[7]

INSERT ::: framep—>index: [0], framep->page:[7]

sk INSERT & [1]40kkok

framep->index: [1], framep->extra:[1250000], count_zeros_before:[3]
framep->index: [2], framep->extra:[2500000], count_zeros_before:[2]
framep—>index: [3], framep->extra:[5000000], count_zeros_before:[1]
>>>>>>>>>>>>>>> Current Level: [1]

framep->index: [@], framep->extra:[625000], count_zeros_before:[5]

>>>>3>>>>>>>>>>> Current Level: [2]

AGING_N Algorithm

LEVEL: [@] - Frames in Mem: 1@, Refs to Mem: 108, Hits: @, Misses: 5, Hit Ratio: ©.000000, [Max Page calls: 5]

Frame # 0 1 2 3 4 5 6 7 8 9
Page Ref : _ 73 72 23 65 _ _ _ _ _
Extra : @ 1250000 2500000 5000000 Q @ ] ] ] Q
Time H @ 48296258 48296258 48296258 48296258 48296258 48296258 48296258 48296258 48296258
Frame # : ] 1 2 3 4 5 6 7 8 9
Page Ref : 7 _ _ _ _ _ _ _ _ _
Extra H 625000 Q e '] Q [} ] e '] Q
Time 1 48296258 48296258 48296258 48296258 48296258 48296258 48296258 48296258 48296258 48296258
Frame # : ] 1 2 3 4 5 6 7 8 9
Page Ref : _ _ _ _ _ _ _ _ _ _
Extra t 0 Q 8 '] Q @ '] ] 0 Q
Time i 48296258 48296258 48296258 48296258 48296258 48296258 48296258 48296258 48296258 48296258

AGING_N Algorithm
LEVEL: [@] - Frames in Mem: 1@, Refs to Mem: 10@, Hits: @, Misses: 5, Hit Ratio: ©.000000, [Max Page calls: 5]
Elapsed: ©.000706 seconds

Figure 6: DeMemory Example of Qutput in an N-Level Memory-Aware Aging Paging
Algorithm (N = 3).

As shown in Figure 6, at the beginning the simulation prints the current status of
the pages in all of the memory levels. After the N-level Aging algorithm was run on the
first level of the memory (Current Level: [0]), it was discovered that the first page (index
= () was not referenced for 4 cycles (extra = 625000, count zeros_before = 4) and the
algorithm calculated that it should be evicted to a lower level of memory. Therefore, the
page has been successfully evicted from the first level of memory (level = 0 , REMOVED:

[1]) and successfully inserted into the second level of memory (level = 1, INSERT: [1]).

Afterwards, the algorithm checked the second and the third levels of memory to
determine if there was a need to upgrade or downgrade any of its pages like it has been

done in the first level, but concluded there was nothing to do. At the end of the algorithm
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execution the simulation reprinted the status of the memory and there was an option to

see that the actions actually took place.

At the end of the output the program presented the status and the statistics of the
simulation so far (and also when the simulation ended), including the number of Hits
(access to a page that is found in the memory system) and Misses (access to a page that is
not found in the memory system), the total Hit / Miss ratio and the time elapsed ever
since the program executed. Those statistics are constantly appended into a log file at the

local directory (dememory.log).

3.6 Algorithms Benchmark

In order to verify our hypothesis regarding the beneficence of using the modified memory-
aware Aging page replacement algorithm in multi-level memory hierarchy, and especially
when this memory hierarchy is a complex of regular DRAM and different types of Storage
Class Memory (SCM), we need to verify that the algorithm is resulting in a more efficient

Hit / Miss ratio.

Therefore, we tested and compared the two types of algorithms, while the first was
running on a classic one-level memory (DRAM only), and the second was running on a 3-
level hierarchy as follows: a classic one-level memory and two extra memory levels with the
same volume (for accurate comparability measurements) as the DRAM. Those two extra
levels were simulating two different types of SCM — one which was 2 times slower than the

DRAM, and the other which was 3 times slower than the DRAM.

These architectures created a situation in which while the classic memory hierarchy
volume is C with V speed of reference, the complex 3-level memory hierarchy volume is 3C
with 0.5V speed of reference on average. The explanation of those parameters is simple:
Each addition of a memory level to the memory hierarchy (N) adds to the capacity of the
whole memory complex (Volume), but also slows the memory complex in average (Speed).

In this example that is the reason why the volume of the memory becomes 3 times bigger
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(14+1+1 = 3) but also 2 times slower ((1+2+3)/3 = 2). Those calculations can be shown in

an equation form as the following (Equation 2, 3):

N
VolumeTmI:Z C. (2)
i=1
N
2,
Speed ;= i:}\f (3)

Therefore, it was crucial to verify that although some slowdown has occurred, in
various cases the N-level memory-aware Aging paging algorithm still delivers better
performance than the classic Aging paging algorithm (with no extra memory levels and

without memory-awareness).

3.7 Results and Analysis

As previously mentioned, the benchmark of the DeMemory simulator as shown in this
thesis has been performed on two different architectures, using several parameters. The
following graphs show this benchmark result, the Hit / Miss ratio, which will be presented
as a function of three variables: The amount of frames in memory (F), the amount of
unique page indexes (I) and the amount of page references (R). In each benchmark we set
two of those parameters to be fixed, and ranged the third parameter in two scales: The
first scale ranged from 10 till 100 (Figure 7-9), and the second scale ranged from 1000 to 1
million (Figure 10-12). The purpose of those two scales is to examine the performance of

the simulation in normal usage scale and in High Performance Computing (HPC) scale.
The results are as followed:

« The Hit / Miss ratio as function of the amount of frames in memory (Between 10
and 100) shows that although the N-level memory-aware Aging paging algorithm
creates a better Hit / Miss ratio when the number of frames is low, as frames added
to the memory system there is an advantage to the classic 1-level Aging paging

algorithm (Figure 7). Those results also persist when the range of the amount of

30



frames in the memory rise to HPC levels (1e3 — 1e6), then the Hit / Miss ratio
becomes constant with a clear favor of the classic 1-level Aging paging algorithm
(Figure 10). However, although these results seems to present an advantage of the
classic 1-level Aging paging algorithm, it is worth noticing that it is impractical to
enlarge the DRAM to this kind of capacity because of its high cost — the price gap
between Storage Class Memory (SCM) and DRAM is about an order of magnitude
— meaning that it would be cost-ineffective, and that the Hit / Miss ratio gap

between the two algorithms (T710%) is not big enough to justify that cost.

The Hit / Miss ratio as function of the amount of unique page indexes (Between 10
and 100) shows that although the classic 1-level Aging paging algorithm creates a
better Hit / Miss ratio when the number of unique page indexes is the same as the
amount of frames in the memory (a situation that almost never happens), as unique
page indexes added to the system there is a clear advantage to the N-level memory-
aware Aging paging algorithm (Figure 8), as it results Hit / Miss ratio which is N
times better than the classic 1-level Aging paging algorithm (in this case, 3 times
better). Thus we can conclude that there is at least a linear proportion between the
amount of extra memory levels and the Hit / Miss ratio while using the N-level
memory-aware Aging paging algorithm. These results also persist when the range of
the amount of unique page indexes in the memory rises to HPC levels (1e3 — 1e6),
which then the Hit / Miss ratio becomes constant with clear favor of the N-level
memory-aware Aging paging algorithm, as the classic 1-level Aging paging
algorithm fails to deliver an acceptable Hit / Miss ratio (Figure 11), meaning the

gap is N times better at the least, and infinity better at the most.

The Hit / Miss ratio as a function of the amount of page references (Between 10
and 100) shows that only when the amount of page references is equal or less to the
amount of frames in the memory the two algorithms results the same Hit / Miss
ratio, which is equal to zero (because every page insertion is a miss at the

beginning). Yet, when the amount of page references gets bigger than the amount of
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frames in the memory there is a clear advantage to the N-level memory-aware Aging
paging algorithm (Figure 9), as it results Hit / Miss ratio which is N times better
than the classic 1-level Aging paging algorithm (in this case, 3 times better). These
results also persist when the range of the amount of page references in the memory
rises to HPC levels (1e3 — 1e6), which then the Hit / Miss ratio becomes constant
(Figure 12) and stays N times better than the classic 1-level Aging paging algorithm

(in this case, 3 times better). Thus we can conclude that there is a clear linear

proportion between the amount of extra memory levels and the Hit / Miss ratio

while using the N-level memory-aware Aging paging algorithm.

3.8 Comparison of Different N-Level Algorithms

In addition to the previous results, there was a need to examine and compare different
algorithms for the same system of N-levels, for a fixed N. To this end, we examined the
results of the N-level memory-aware Aging paging algorithm with intentional modification
where there is no direct link between the amount of zeros in the beginning of the page

referenced bits to the level of memory that that page should be evicted to.

As mentioned in chapter 2.7, based on the knowledge that the amount of zeros in
the beginning of the page referenced bits points to the amount of unreferenced past clock
ticks — and therefore on the page aging status — it was wise to evict the page straight to its
proportionate level of memory. In order to test the hypothesis that by forming a dynamic
pyramid hierarchy of both page and memory necessity it was possible to get the best
performances for a paging algorithm in an N-level memory hierarchy, we modify the
behavior of the algorithm to select different levels rather than the correct direct levels.
Specifically, if a page at level 1 was directed towards level 2 in our original N-level
algorithm, it is actually redirected to level 3 and vice versa. Afterwards, we reexamined the
Hit / Miss ratio as function of the amount of page references (Figure 13) and discovered,
unsurprisingly, that there was a loss in performance in comparison to the correct

algorithm.
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4 Conclusions and Future Work

4.1 Conclusions

Those benchmarks, results and analysis lead to the following conclusions:

1. In average, a complex of regular DRAM and different types of Storage Class
Memory (SCM) with the same size, will make the whole memory about N times

slower than the DRAM, but N times bigger than the DRAM.

2. There is a clear advantage to the N-level memory-aware Aging paging algorithm, as
it results Hit / Miss ratio which is N times better than the classic 1-level Aging

paging algorithm.

Therefore, because these two conclusions at least eliminate each others effect by
compensating the slowdown with at least the same growth of the Hit / Miss ratio, and
because of the fact that the price gap between SCM and DRAM is about an order of
magnitude, we can conclude that it would be beneficial to use the N-level memory-aware
Aging paging algorithm in multi-level memory hierarchy which include SCM in regular

computing systems as well as in High Performance Computing clusters.

4.2 Future work

This thesis opens a number of prospective directions for future research. One immediate
direction is to explore how the current N-level memory-aware Aging paging algorithm is
reacting when the memory levels are not in the same size or are not from the same class of

the current Storage Class Memories (SCM) which are in the market.

Finally, we also expect that in the near future the SCM will be a real and
widespread technology, meaning that investigating the real technology and comparing it to

the current simulation would be a fertile ground for further research and development.
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