
CalCul: A Python- ased Workspace for
High-Performance Parameters-Sweep in

Scientific Legacy Codes
Gal ORENa,b and Guy MALAMUD

b
a

 Department of Computer Science, Ben-Gurion University of the Negev, P.O.B. 653,
Be’er Sheva, Israel

b
 Department of Physics, Nuclear Research Center-Negev, P.O.B. 9001, Be’er-Sheva,

Israel

Abstract. Scientific legacy codes are usually holding large numbers of physical
arrays which have been used and updated by the code routines, and the code
parameters are set using a simple textual data file. Therefore, in cases when there is
a need to perform a parallel large-scale parameters-sweep, the user needs to
manually replicate the code multiple times, change the data file to its needs, run the
code and control its performances - at each working directory separately. This task
is practicable when there is a need to create several computations, but impossible
when there is a need to run a large-scale parallel parameters-sweep on a cluster with
thousands of calculations. In this work we present CalCul - A Python-based
Workspace for High-Performance Legacy Scientific Codes, which is able to
automatically render most of legacy codes data files into a python object, allowing
the user – using many other functionalities – to control and handle all the needs of
a parameters-sweep using the simplicity and sophistication of Python libraries, and
thus allowing the conversion of work with software from manual to automatic. Also,
in order to not damage the way legacy software work, and in order to abstain from
replacing existing work modules for these software, the CalCul system provides a
mirror between the changes done using the Python object and the legacy data files,
and thus allows working dually on the software – either from CalCul or from the
data files itself. CalCul also interfaces with IPython interactive command shell, and
in this way, the user can manage all of his scientific actions entirely in one hermetic
workspace.

Keywords. High-Performance Computing, Python Workspace, Legacy
Computational Scientific Codes, Parallel Tools, Parameters-Sweep.

1.�Introduction

Scientific computation is a central tool in computerized simulation planning, which runs
on a powerful, parallel computer [1]. In order to perform their research jobs, physicists
at NRCN use software developed by the computational groups (such as LEEOR2D-
3D [2] [3] [4]), and other software such as OCTAVE [5] visualize and analyze results.
In this paper, we will examine the workspace in which the physicist work while using
the scientific software and the parallel computing, and provide a software system that
will significantly improve the physicists’ working processes.

In order to demonstrate the essence of the improvement, there is a need to understand
first the workflow of a physicist in a computational group. Usually, the physicist has

B

Parallel Computing is Everywhere
S. Bassini et al. (Eds.)

IOS Press, 2018
© 2018 The authors and IOS Press. All rights reserved.

doi:10.3233/978-1-61499-843-3-242

242

performed a scientific job that includes running tens of computations, analyze their
results, and produce numerous graphs that display the interesting results physically. After
the physicist finishes the job, he also participated in a discussion where he was asked to
perform the computations again with a change of one (or more) of the physical
parameters and was also asked to test how it changes the physical conclusions that were
previously presented. Then, the physicist returns to work and marks the computations he
would like to recalculate. Afterwards, the physicist chooses which parameter he would
like to change, inserts the new values and chooses which graphs he would like to generate
from the new calculation results.

The experience in the computational field certainly demonstrates that this scenario
is almost imaginary, or at the very least far from today’s reality, since in order to make
such a scenario occur in today’s reality, one must access the folder where each
calculation was made, make a copy of it, and edit the data file. Then, one should check
which computers are available, and execute as many runs as possible. When these runs
are terminated, more runs are executed, until all runs are terminated. Choosing the graphs
we would like to generate means that after each run terminates, we need to access its
folder from the visualizing software (in this case, OCTAVE), open the diagnostic files,
extract the relevant data, and then integrate the results from numerous computations and
create the graphs.

This description may sound familiar to anyone handling computations, and such
operation may include additional struggles. If a part of the job has taken place numerous
weeks or months ago, the physicist may not remember which computation is in each
folder. In this case, the physicist must examine his folder tree, use the diff command to
see the differences between the different folders, understand which computation exactly
was created in each folder, and why. This process alone may take a few hours.

In the next stage, when the runs are being executed, they must be “supervised” to
make sure they don’t crash from I/O exceptions or other technical reasons, and if this
happens, the runs must be restarted from the latest checkpoint. This way, even when the
runs are being executed, they occupy the physicist’s attention and disturb him from
working on other subjects.

In the result analysis stage, the physicist goes through the original graphs he had
generated, and generates equivalent graphs from the new runs. In the best case scenario,
the graphs were generated using OCTAVE script files, which the physicist had stored
properly, in which case they need to be located and executed again from the appropriate
folder. In a less optimistic scenario, the graphs were generated interactively from the
OCTAVE working window, which would mean the physicist would have to recall earlier
work in order to regenerate equivalent graphs from the new calculations. Such task may
also take quite some time.

The popular conception regarding this issue is that there is nothing to do about it and
this is how things work: we copy folders, edit files, and run OCTAVE. It takes some
time, but it is part of the job requirements of computational physicists. Additionally,
another common belief is that no alternative solution is necessary since this is the way
things have worked for many years and it works well: research is being done, and papers
are being written. The authors of this paper would like to make two counter-arguments:

1.� The working procedure described above will be insufficient in the future. It
works well for one or a few computations. However, when tens of computations
need to be executed, it can be problematic, and when hundreds or thousands
computations are necessary, it is limiting and may be impossible. In the past,
this procedure had not been a bottleneck, since the computation power had

G. Oren and G. Malamud / CalCul: A Python-Based Workspace 243

limited the number of computations that could be performed. However, as the
computation power increases (and it keeps increasing), the computer has the
ability to perform more computations in a parallel fashion, which means the
overhead of the entire process becomes more and more significant. To
demonstrate, let us assume that today, a physicist spends an estimate of 10% of
his time on technical tasks of executing and maintaining computations. Assume
the next computer will have 20 times the computation power of the current
computer. Assume we will use this increase of power to create more descriptive
computations, but in parts of it, we will also test more parameters. Assume the
number of computations that the physicist performs will increase fourfold. In
today’s existing methods, both the overhead time will increase fourfold, and we
will reach a situation where 40% of the physicist’s time is spent on technical
tasks. We cannot accept such situations.

2.� There is another way. The imaginary scenario from the opening paragraph is no
longer unrealistic because, after all, all the information required for it to happen
is already stored on the computer. The first computation has already been
executed, and the corresponding graphs have been produced.

3.� All of the additional information necessary for the computer is just which
parameter needs to be changed, and which computations need to be repeated.
To demonstrate this, let us assume every physicist hired an assistant that did not
understand physics at all but can follow precise instructions. The physicist
would tell him to take these and these folders, create their copies, change the
following parameters in the copied folders, and run them. Then, execute all the
OCTAVE commands in which he has seen the physicist execute on the original
folders. It is clear that this human assistant would have all the information
necessary to complete the task. Hence, a software system that will function just
like this assistant is, in fact, possible. After all, the computer is the best in
remembering how tasks had been executed in the past, and precisely follow
instructions.

The first claim is obvious and does not require further discussion. The next sections
will elaborate on the second argument and present general guidelines and initially
describe the software system that will make us closer to the scenario described in
the first paragraph. In section 2, the root of the gap for the current problems will be
analysed against the ideal state described above. In section 3, we will discuss the
Python programming language and explain why it is the appropriate tool to
implement the suggested software system. In section 4 we will present the various
components of the system and elaborate on the features of each component and its
benefits. And finally, we will provide our conclusions.

2.�Vocabulary Gap

The reason for encumbrance in the current working process is the gap of vocabulary
between the physicist and the computer. The computer understands the following terms:
folders, text files, computation servers, and executable files. These terms are closely
related:

•� A folder may contain files and other folders.
•� A file or a folder is defined by its name and the folder containing it.

G. Oren and G. Malamud / CalCul: A Python-Based Workspace244

•� A text file contains a collection of lines that contain a collection of characters.
•� An executable file can be run on any computation server.
•� When an executable file is run, it can read and write the content of files.
In addition to the rules that explain the relationship between these terms, the

operating system includes a set of commands that allow the manipulation of the above
objects:

•� Commands that create folders and copy files.
•� Commands that compare between text files based on the lines that make them

up.
•� Commands that allow running a particular executable file on particular

computation servers.
This is the vocabulary of a computer, and it knows how to execute commands that

are formatted using these terms. The physicist’s world is different in that way: it includes
computations, parameters, FORTRAN code, diagnostics, and graphs. These terms are
also closely related:

•� A computation is defined by a FORTRAN code with a collection of parameters.
•� A computation may be in one of three states: currently being executed, has been

executed, or has not been yet executed.
•� When the computation is executed, it creates and writes diagnostics.
•� From the diagnostics of numerous calculations, graphs can be generated.
In addition to the rules that relate these terms together, the physicist may want to

engage with the above objects:
•� Run a computation.
•� Compare between computations and see the differences of the FORTRAN code

and the set of parameters that define them.
•� Generate a graph from a diagnostic created by some computation.
•� Create a computation based on an existing computation and change some

parameters.
•� Generate a graph similar to a previously generated graph, based on a new

calculation.
•� Generate a graph based on the results of numerous calculations.
This is the physicist’s world in this context, and he articulates his desires using these

terms. Thus, we have a computer with a certain set of terms (which can accept commands
that are formatted with these terms), while we have a physicist with a different set of
terms (with desires formatted using these terms). In order for the computer to be able to
perform the physicist’s desires, these desired must be translated from using the same set
of terms to another. The translation from the physicist language to the computer language
is not complex:

•� The FORTRAN file is located inside text files.
•� Parameters are located inside a text file, called a data file.
•� A computation is a folder that contains these folders.
•� In order to compare two computations, the two text files need to be compared.
•� In order to perform a computation, the compilation commands need to be

executed from the computation’s folder, and then they must choose the
computation servers necessary, and perform the execution command.

•� In order to test the execution’s state, look at the last lines of a certain text file.
•� In order to stop the execution, write a number to a certain text file.

G. Oren and G. Malamud / CalCul: A Python-Based Workspace 245

•� In order to examine the results of a computation, open the diagnostic files using
OCTAVE.

•� To generate a new computation based on an existing one, copy all files from
one folder to a new folder and edit it.

In today’s existing reality, the physicist himself performs the translation. This is the
way physicists learn the computer language. They learn which commands copy files,
which files compile, which command show available computers and which allow to
compare text files and look at the last files of each file. The entire job of the physicist
with a computer is done using a computer language that is far from the physicist’s
language, even though the translation is not complicated.

There is an alternative situation: while physicists learn the computer language, terms,
and rules, we can teach the computer how to use the physicist terms and their rules. Such
action is quite common in the field of software engineering; it is called translating from
a language of problems to a language of solutions, or at least creating an additional
abstraction layer [6]. Thus, is it possible to create a software system that will allow a
physicist to work in a world of computations, parameters, diagnostics, and graphics, but
only if we use the appropriate tools and methods.

3.�Python – The Appropriate Tool

CalCul, the suggested system, is based on a Python environment and the common
methodologies that are practiced in the environment. Python is a high-level, dynamic
language that originated in 1991 [4]. In the years since, it had developed to become one
of the most influential languages in the computer science world. Python is especially
supporting and encouraging of fast and dynamic working methods of software
development. In addition, many libraries have been developed – particularly scientific
libraries – and due to the language’s structure, all of these libraries interact with each
other in synergy and enable the performance of complex task with an unprecedented ease.
Python is used in many projects in the computation world in general and specifically in
scientific computation [7].

Below is a summary list of the advantages of Python with regards to developing a
working environment for physicists:

1.� Dynamic: Python makes it very easy to create a prototype and quick
development. In Python there is no need to analyse the complete needs of the
system and then write the code; it is possible to quickly write the code for part
of the needs, start using it, and later on add or change it according to the changes
needed.

2.� Modular: Python encourages and enables building modular software systems.
This way, while every module in the system can function in isolation and
provide some functionality, modules can work together and integrate to provide
a richer functionality.

3.� Mature tools for scientific computations: over the years, numerous modules
have been developed in Python to provide almost all functionality that is offered
by OCTAVE [7]. Additionally, advanced visualization tools such as VisIt [8]
are integrated with a Python interface, along with other resource management
systems for parallel computers [9] (such as SLURM).

4.� Syntax: one of the leading principles that dominated the language design is the
understanding the importance of readability. A Python code is usually more

G. Oren and G. Malamud / CalCul: A Python-Based Workspace246

readable and easier to maintain compared to code in other languages.
Additionally, it is very easy to learn how to use Python, both for physicists and
engineers. In this way, Python is like OCTAVE: it is easier to learn even for
those who do not program professionally, but unlike OCTAVE, Python is a
complete, strong programming language.

5.� Programming fashion: Python supports both Programming in the Small and
Programming in the Large - this means Python has proven support in both
writing simple scripts that handle small tasks and in creating larger,
infrastructure systems that consist of hundreds of thousands of lines of code [10].

6.� Interactive work: Python supports both regular programming as well as
equipping the programmer with strong tools for interactive tools, similar to the
workspace of OCTAVE. Two relevant tools in this context are IPython [11], an
improved Python environment for interactive jobs with clustering abilities, and
Spyder [12], an OCTAVE-like, Python-based environment.

In the next section, we will describe the structure of the software system. The
structure is not of a monolithic system, but of a modular one – which means a collection
of individually independent modules. This way, it is possible at first to deliver the
software using one module and get immediate benefit. Next, it is possible to implement
additional models; the suggested models are ones that interact in a well-designed, proved
manner, which means that as more modules are implemented, the utility of the modules
together will be greater than the sum of utilities for each module independently.

4.�The Computation Management Module

4.1.�Current Calculations Management

A computation is defined by a set of files, usually FORTRAN files, and a data file. The
commonly practiced procedure is that each computation is located in a different folder,
and a folder that contains a terminated computation is not alternated anymore and
remains constant, containing the result of the computation that was executed inside it.

When a physicist would like to create a new computation, he creates a new folder,
copies the files from a similarly prepared computation, changes some parameters, and
runs the computation.

Another aspect of the common working practices is that folders of a specific
computation are often created as a subfolder of the folder of the computation on which
it is based. This way, the folder tree structure also hints at the logical structure of the
computation – a computation that is under a specific folder is a variation of the
computation in the folder above it. For example, a folder tree may look like this:

>> tree(“project_A”)
project_A/
-- 3d/
 |-- param_a=3.1/
 | |-- different_rezone/
 | | -- high_res/
 | -- high_res/
 -- param_a=3.2/

G. Oren and G. Malamud / CalCul: A Python-Based Workspace 247

In this example, the folders project_A/3d contains a three-dimensional computation
for a certain project, while the folders params_a=3.1 and params_a=3.2 contain the
same computation with the difference of some parameter with different values. Inside
the folder params_a=3.1, the tests of a different rezones are located which contains a
higher resolution.

To demonstrate this, let us examine the process of reviewing a computation that has
been performed in the past, and create a new computation with a higher resolution. Today,
the process looks like this:

>> pwd
/physicist/project_A/3d/param_a=1
>> mkdir high_res
>> cp ./* high_res
>> cd high_res
>> pwd
/physicist/project_A/3d/param_a=1/high_res
>> vi data_file # Edit the data file and increase resolution
>> make clean & make & make run
>> cat out | grep “NCYC=” | tail

This is the process of a single computation. Now, assume that the original folder

/physicist/project_A/3d/param_a=1 has 10 more computations with different values of
param_a, and that the physicist is interested in making computations with higher
resolution for all values. In this case, the process above will be executed 10 times
manually. As previously explained, this work fashion should not be tolerated.

4.2.�CalCul Calculations Management

The main module in the CalCul system is the computation management module. This
module is responsible to the computations in every phase they go through: running
computations, terminated computations, and computations that are being prepared. The
purpose of this module is to create the entire process of creating and managing
calculations simpler and easier. This is achievable by changing the process from a user
controlled process that is based on the file system, to a process controlled by an
automatic, customized software system that handles computation management. Also, in
order not to damage the way legacy software work [13], and in order to abstain from
replacing existing work modules for these software, the CalCul system provides a
constant mirroring between the changes done using the Python object and the legacy data
files, and thus allows working dually on the software – either from CalCul or from the
data files itself. This has been done using the datafile method, which is able to
automatically convert standard legacy codes data files (i.e. textual files of numbers,
strings and structs) to a Python object, which can be operated using dedicated method.
Among those methods we can mention:

 Table 1. CalCul main methods.

Command Info

clone Copy files / directories to other destination.

G. Oren and G. Malamud / CalCul: A Python-Based Workspace248

archive Prints calculation under directory including selection base on
keyword and order by time or hierarchy.

tree Prints directories under path as a tree, options to pad and select
directories or files presentation.

tocopy Returns a deep copy of a class instance. Keeps each copy in a
specified directory under directory /object_copies in wd.

put Creates subdirectories in current or other directory with a data file
object. The path to the subdirectory with the datafile object will
start with "calc", and can get a list with the desired name of the
sub-directory base on different arguments.

runc Compile and run the calculations using SLURM

status Get status of the runs by SLURM jobid

datafile Constructor - Gets full path to a data file or operates from a path
in which a data file exists

plot Prints the datafile object by categories and data-types using
specialized identifying colors. Can print the whole file or specific
range of lines.

replace Replace an argument in the datafile object as well as in the datafile
file itself. Can replace any argument in the datafile by indexes
([line, arg]). Can get an expression or formula, and a second
argument with the specific values, and the outcome will be
calculated automatically and will be set in the object, as well in the
file itself. All changes done using other functions use replace.

repll / repla Replace line by a specific index with a different line / Replace
argument by an argument name index

find Finds all of the lines in which the expression searched found.

get Get the value from the file in its type.

get_type Returns the value and type information from the file in its type.

getl / addl / reml Get/Add/Remove line by a specific index.

addarg / remarg Add / Remove argument by a specific index in a line.

undo / redo Returns the datafile object and the file itself to the previous / next
state (for replacements).

So far, we have seen how the computation management module can support every

work process of today’s physicists. However, we have not yet seen which new features
it enables. First, it is important to note that the first criteria which the module needs to
support are that any ability that is easy to perform for physicists today, will be easy to
perform on the new module as well. However, the computation management model
allows doing things that today are difficult or impossible. As previously described,
assume that the original folder /physicist/project_A/3d/param_a=1 has 10 more
computations with different values of param_a, and that the physicist is interested in

G. Oren and G. Malamud / CalCul: A Python-Based Workspace 249

making computations with higher resolution for all values. Using the computation
management module CalCul, the same can look like this, when executed from Python’s
interactive workspace:

In [1]: old_calcs = archive(‘/physicist/project_A/3d’)
In [2]: old_calcs
Out[3]: [‘/physicist/project_A/3d/param_a=1/data_file’,
 …
 ‘/physicist/project_A/3d/param_a=10/data_file’]
In [4]: clone(‘/physicist/project_A/3d/*’,

‘/physicist/project_A/3d/high_resolution’)
In [5]: new_calcs = archive(‘/physicist/project_A/3d/high_resolution’)
In [6]: new_calcs
Out [6]: [‘/physicist/project_A/3d/high_resolution/param_a=1/data_file’,
 …
 ‘/physicist/project_A/3d/high_resolution/param_a=10/data_file’]
In [7]: new_res = 100
 …: for new_calc in new_calcs:
 …: new_calc.repla(‘N_CELLS’, 1, new_res)
In [8]: for c in new_calcs:
 …: print runc(c)
Out [8]: {Outs and Errors of the Run}
In [9]: for c in new_calcs:
 …: print status(c)
Out [9]: JOBID 5034985 -> Slurm=No Errors | Running=None | Normal-

Termination=True

The most important observation in this code is that a computation is represented by

a Python object. The computation object has functions that it provides (methods), and
the computations archive has functions that return a computation object or a list of
computation objects. We see that at first, we called the function archive; this function
returns a list of Paths that represent the chosen computations (which can be accessed as
object using the datafile function). Then, we wrote a short loop that iterates over the
chosen computations, and generates new computations from them. After examining the
new computations, an additional loop executes them and they start running. An
additional loop monitors their performance until termination.

Aside from choosing the computations, there are two non-trivial actions performed
in the above example: changing the resolution in the data file (data_file), and running
the computation. The change of resolution was done using textual replacement of a string
inside the computation’s data file. In order to provide such an option, all the computation
object needs to provide is a convenient access to the data_file file that defines the
computation. In the above example, this access is done using the function repla.

As for executing the computation, in the above example, the computation object
provides a function called runc that runs it. The implementation of this function accesses
the computation folder and executes the running commands that will execute it in the
currently connected computation server using the SLURM resource management
system [14]. It should be noted that SLURM contains a convenient Python interface
(called PySlurm), which allows to easily implement that connection between the
computation management model and the resource management system for various uses.

G. Oren and G. Malamud / CalCul: A Python-Based Workspace250

In recent years, there has been a significant increase in the computational power,
simultaneously to the amount of computations performed by a physicist. However, due
to the fact that simulation software tools are mostly legacy software, it was impossible
to convert the working environment with these tools to modern tools. This paper presents
a software system called CalCul. The purpose of the presented system is to allow
physicists to improve work efficiency while using a module that automatically decodes
the data files of programs and converts them, along with the computational array they
represent, to a Python object, and thus allowing the conversion of work with software
from manual to automatic.

References

[1]�Eijkhout, Victor. Introduction to High Per’ Scientific Computing. Lulu. Com, 2014.
[2]�Freed N, Ofer D, Shvarts D, Orszag SA. Two�phase flow analysis of self�similar

turbulent mixing by Rayleigh–Taylor instability. Physics of Fluids A: Fluid
Dynamics (1989-1993). 1991 May 1;3(5):912-8.

[3]�Ofer D, Alon U, Shvarts D, McCrory RL, Verdon CP. Modal model for the nonlinear
multimode Rayleigh–Taylor instability. Physics of Plasmas (1994-present). 1996
Aug 1;3(8):3073-90.

[4]�Malamud G, Levi-Hevroni D, Levy A. Two-dimensional model for simulating shock-
wave interaction with rigid porous materials. AIAA. 2003 Apr;41(4):663-73.

[5]�Brewster, Matthew, and Matthias K. Gobbert. A comparative evaluation of Matlab,
Octave, FreeMat, and Scilab on tara. Citeseer2011 (2011).

[6]�Ghezzi, Carlo, Mehdi Jazayeri, and Dino Mandrioli. Fundamentals of software
engineering. Prentice Hall PTR, 2002.

[7]�Oliphant, Travis E. Python for scientific computing. Computing in Science &
Engineering 9.3 (2007).

[8]�Harrison, Cyrus, and Hari Krishnan. Python’s Role in VisIt. Proceedings of the
eleventh annual Scientific Computing with Python Conference (SciPy 2012). 2012.

[9]�Thiell, Stéphane, Aurélien Degrémont, and Henri Doreau. ClusterShell, python
library and tools for scalable cluster administration. PyHPC. 2013.

[10]� Lutz, Mark. Learning Python: Powerful Object-Oriented Programming. O'Reilly
Media, Inc., 2013.

[11]� Pérez, Fernando, and Brian E. Granger. IPython: a system for interactive scientific
computing. Computing in Science & Engineering 9.3 (2007).

[12]� Boschetti, Alberto, and Luca Massaron. Python data science essentials. Packt
Publishing Ltd, 2016.

[13]� Feathers, Michael. Working effectively with legacy code. Prentice Hall Pro’, 2004.
[14]� Yoo, Andy B., Morris A. Jette, and Mark Grondona. Slurm: Simple linux utility for

resource management. Workshop on Job Scheduling Strategies for Parallel
Processing. Springer, Berlin, Heidelberg, 2003.

Acknowledgments

This work was supported by the Lynn and William Frankel Center for Computer Science.

Summary

G. Oren and G. Malamud / CalCul: A Python-Based Workspace 251

