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Abstract. Hydro-PED [1] is a numerical simulation software which models nucle-
ation and propagation of damage zones and seismicity patterns induced by well-
bore fluid injection. While most of the studies in geo-physical simulation acceler-
ation and parallelization usually focus on exascale scenarios which are translated
into vast meshes, encouraging a distributed fashion of parallelization, the nature
of the current simulations of Hydro-PED dictates amount of data that can conve-
niently fit on a single compute node - NUMA and accelerator memory alike. Thus
shared-memory parallelization (such as OpenMP) can be fully implemented. In or-
der to utilize this insight, Hydro-PED was interfaced with Trilinos [2] linear alge-
bra solvers package, which enabled an evolution to iterative methods such as CG
and GMRES. Additionally, several code sectors were parallelized and offloaded to
an accelerator using OpenMP in a fine grained manner. The changes implemented
in Hydro-PED gained a total speedup of x5-x12, which will enable Hydro-PED to
calculate long-term simulation scenarios of hundreds of years in a feasible time - a
few weeks rather than a year.
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1. Introduction

On the past few decades, the increasing compute power encourages the development and
usage of scientific computer simulations as a preliminary step before traditional exper-
iments and industrial development. The geophysical research area is no exceptional as
applications like FLAC [4], GEOS [5] and others provide numerical simulations for a
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wide range of geophysical scenarios [6] [7]. Hydro-PED [1] was developed in 2013 in
order to simulate hydro fracturing [8].

Hydro-PED was first introduced as a serial program written in Fortran 90, which
models nucleation and propagation of damage zones and seismicity patterns induced by
wellbore fluid injection. The model formulation of Hydro-PED accounts for the follow-
ing general aspects of brittle rock deformation: (1) Nonlinear elasticity that connects the
effective elastic moduli to a damage variable and loading conditions; (2) Evolution of
the damage variable as a function of the ongoing deformation and gradual conversion of
elastic strain to permanent inelastic deformation during material degradation; (3) Macro-
scopic brittle instability at a critical level of damage and related rapid conversion of elas-
tic strain to permanent inelastic strain; (4) Coupling between deformation and porous
fluid flow through poro-elastic constitutive relationships incorporating damage rheology
with Biot’s poroelasticity.

Most of the studies in geo-physical simulation software acceleration and paralleliza-
tion usually focus on exascale scenarios which simulate mesh simulation while focusing
on either wide areas or high resolution. As a result, most of the simulations result in a vast
and dense mesh of cells, encouraging software developers to adopt a distributed fashion
of parallelization in order to divide the computational load between as many computa-
tional cores as possible. However, this is not the case in current Hydro-PED simulated
scenarios as even a relatively coarse grained mesh with static pre-defined fine area near
the wellbore edges, provides valuable insights about the simulated scenario. Therefore,
the nature of the current simulations of Hydro-PED dictates the amount of data that can
conveniently fit on a single compute node - NUMA and accelerator memory alike. thus
shared-memory parallelization (such as OpenMP) can be fully implemented. Neverthe-
less, while Hydro-PED also supports simulations of a short-range of time, the long-term
simulations are of special interest in the context of damage estimation. However, the time
dimension is not subject to parallelization. When it came to simulation of hundred of
years in high definition, the runtime of Hydro-PED became unfeasible. Consequently, it
was crucial to inspect various approaches in order to accelerate each simultaion timestep
on a single node.

2. Hydro-PED - Hydro Poro-elastic Damage simulation

Hydro-PED consists of two modules: (1) Mechanical-Damage module and (2) Hydrolog-
ical module. The mechanical module iterates over all simulation cells and solves relevant
geo-physical equations using Explicit Finite Difference Lagrangian Method (EFDLM),
while the hydrological uses the Finite Element Method (FEM) to transform the diffusion
equations into a linear equations system. Later, the module initiates a third party direct
solver (HSL [9]). A tetrahedral mesh is used to describe the physical area throughout all
simulation modules. Each tetrahedron is referred as element and each of its vertices is
referred as node. Another module which couples heat equations is currently under devel-
opment. Figure 1 provides a schematic overview of the relations between the modules.
These relations will be explained on the following subsection.

2.1. EFDLM Mechanics Module

Explicit Finite Difference Langrangian Method (Hence EFDLM) is a fully explicit nu-
merical method relies on a large-strain explicit Langragian formulation originally devel-
oped by Cundall [10].
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Figure 1. Schematic overview of the relations between Hydro-PED modules. The Thremodynamics module
is currently under development.

The module solves the force balance equation for each node in the mesh. The forces
over the body are induced from the underground stresses and a Frequency Independent
Damping. Using the force balance, the velocity of each node is obtained. Later, the strain
tensor of each element is being calculated, which is induced by the combination of elastic
and plastic strain. The strain tensor enables the calculation of the new coordinates of each
node. Using this data, the module produces the volume (V ) and permeability (K) of each
element which will be used in the hydrological module.

The mechanical module uses an adaptive timestep. This timestep is calculated at
each iteration such that simulation cycles will be more frequent whenever a rapid changes
occur, and will be rare when there are no notable changes on rock’s form. The damage
state of the rock is calculated at each step. Whenever a failure occurs, the simulation
walks into a subroutine called drop which performs several healing actions.

Prior to the current work, some OpenMP directives were implemented in certain
parts of the mechanical module of Hydro-PED. However, the acceleration achieved by
these directives were insufficient.

2.2. FEM Hydrology Module

On each hydrological step, the corresponding module receives the current volume and
permeability level of each element. The module solves a differential equation which de-
scribes the diffusion of fluid pressure through the rock. In order to do so, the module uses
the well-known finite elements method (FEM) which yields a system of linear algebraic
equations. For a given N elements, the equations are of type A~x =~b, where A is a N×N
sparse symmetric positive matrix, b is a pre-calculated vector of size N representing the
flux on each element, and x is the target solution vector of size N. The vector x repre-
sents the pressure (P) on each element. These values will be used later by the mechanical
module to simulate the next timestep.

Since Hydrological changes in the wellbore tends to be less extensive, a hydrological
step will occur after every couple of mechanical steps, excepts when the mechanical
timestep is too long. Due to the adaptive timestep mechanism implemented in Hydro-
PED, the geological changes between each two consecutive steps are relatively small.
Consequently, the numerical errors generated by the simulation are minor and can be
neglected.
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2.3. FEM Heat Module (under development)

The heat module will be called at every hydrological step. It shall receive the fluids ve-
locity (v f ) and calculate the diffusion and advection of the temperature over the fluids.
Using the finite elements method, the heat equations can be translated into a system of
linear algebraic equations, A~x=~b. However, due to the advection, matrix A will be asym-
metric. This fact enforces a usage of slightly different solution methods. The solution of
the linear system yields the density (ρ) and viscosity (µ) of the fluid.

2.4. Bottlenecks and Challenges

Considering the common scenario, most of the computation time of Hydro-PED is spent
by the solution process of the hydrological linear algebraic system. After the construction
of the the system (i.e. constructing matrix A, and vector~b, and after allocating memory
space for the solution vector~x, the system was sent to a third-party solver library called
HSL [9]. This solver uses an algorithm which has time complexity of O(n3) (for matrix
of size n× n), as will be explained on section 4. Hence, finding more efficient way to
solve the linear system, given the modern heterogeneous system architectures, was one
of the first necessary steps.

Another disadvantage of using HSL was its lack of support for asymmetric matrices.
Keeping on mind that the next challenge will be the coupling of the heat module with
the current modules, which will yield an asymmetric matrix, forced a search after new
solvers.

Yet another aspect which was investigated is how to boost the performance of the
mechanical module itself. As mentioned before, some parts of the module were paral-
lelized using OpenMP directives in a fine-grained manner. However, we were curious
whether the power of accelerators can be utilized to achieve another speedup, which, as
mentioned before, was crucial in order to shorten the amount of time the run spent on
each timestep.

3. Speedup Using Explicit Asynchronous Offload

In order to find how to exploit better performance from the mechanical module, a
parallelization-driven profile of the code was conducted. The profile focused the search
to a subroutine which calculated the displacement of mesh elements coordinates. While
the execution-time per-call of the subroutine was relatively small, this subroutine was
called over and over, resulting in a consumption of on not less than 41% of module’s total
runtime. By implementing both parallelization and time-sharing offload, extra speedup
was achieved.

3.1. Profiling

TAU Performance System [11] is a commonly-used profiler which is aimed to the task of
profiling runtime of parallel applications. TAU shows how much time was consumed by
each subroutine on each MPI rank and by each thread. Profiling Hydro-PED using TAU
provided the bar-chart provided on figure 2 (the bars representing threads #17-#31 were
deleted as they showed just the same behavior as the other threads). It is clear from the
chart, that most of the runtime is consumed by the subroutine indicated by dark-red color.
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Figure 2. TAU profile results for the me-
chanical module. Red bars represents execu-
tion time of subroutine derivation.

Figure 3. TAU profile results for
move grid’s execution time per call. Most
of the time was spent by the main thread.

This subroutine turned to be a subroutine called derivation which is initiated from the
subroutine move grid. The subroutine move grid is used to calculate the displacement of
elements’ coordinates (based on the velocities induced by the pressure vectors). Closer
inspection of the subroutine showed that each invocation of the subroutine is relatively
fast (figure 3). However, this subroutine is used on frequent occasions which explains its
vast time consumption.

1 subroutine move_grid(dt)

2 ...

3 ! calculate new coordinates based on velocities

4 do i=1,nodes_count

5 cord(i) = cord(i) + vel(i)*dt

6 end do

7

8 do i = 1,elements_count

9 ! derivation of basic functions

10 call derivation(i,cord,dr)

11 strain(i) = calculate_new_strain(strain(i), dr)

12 ! update fluid pressure

13 pf_el(i) = calculate_new_pressure(pf_el(i), dr, dt)

14 end do

15 return

16 end subroutine move_grid

Listing 1: The implementation of move grid subroutine.

Listing 1 provides the implementation of subroutine move grid. Note that parts
of the code were encapsulated in subroutines (i.e. calculate new pressure and calcu-
late new strain) for simplicity. After close inspection of the called subroutines, making
sure that move grid is a SIMD (Single Instruction Multiple Data) calculation, the en-
tire content of the subroutine was wrapped in OpenMP’s parallel-SIMD directive. In or-
der to further improve the runtime, we considered offload to Intel® Xeon-Phi® 5110p
co-processor (formerly known as Knights Corner - KNC) [12]. The performance on
newer Xeon-Phis should outperforms our results. Offload to GPGPU accelerators using
OpenMP 4.5 is not yet fully supported by most common Fortran compilers. As it will be
implemented, we will be able to perform the same offload to NVIDIA® accelerators as
well.

3.2. Asynchronous Accelerator Offload

In order to perform a calculation on an accelerator, the input data should be offloaded
to the accelerator first. Later, after the accelerator completes its calculations, the results



Levin, Oren, Shalev, Lyakhovsky /

Host

Target

Calculate inputs Misc. move grid Misc.

Offload move grid Upload

Figure 4. A timeline that demonstrates a common execution scenario where move grid runs simultaneously
on both host and target. The communication between the host and the target is asynchronous.

should be sent back to the host. The time consumed by the communication between
the host and the target is relatively large and is correlated linearly with the size of the
data. Consequently, the effectiveness of of the offload is usually subject to the computa-
tional load of the calculation itself. Nevertheless, while move grid’s computational load
is pretty light, one can benefit from splitting the calculation between the host and the
accelerator. The basic idea is to send the input arrays to the accelerator asynchronously
as soon as possible, even before move grid was called. Than, when the application initi-
ates the subroutine, cord array will be calculated by both the host and the target simul-
taneously. Then, the host will calculate part of strain and pf el array, while the target
will calculate the rest of these arrays. Whenever the host finished calculating his part, he
will continue the execution of the program to the point where the value of strain or pf el
are necessary. Whenever the target finishes his part of the computation he will send his
output back to the host asynchronously.

This concept is demonstrated by the timeline presented on figure 4. The red line
above represents the host, and the green line below represents the target. The timeline
starts with the calculation of the arrays which are crucial for the calculations performed
on move grid. Whenever these arrays are ready, they will be offloaded to the accelerator,
while the host performs another calculations. When the host steps into move grid, the
target will initiate the calculation on his part of the data. The host may continue with
miscellenous calculations while the target still calculates his part. However, whenever
the host reaches a part of the code where either strain or pf el arrays are crucial, he will
make sure the fresh data from the target was received (otherwise, he will wait).

3.3. Results

We implemented an asynchronous offload of move grid subroutine. The results were
tested on a machine with two sockets Intel® Xeon® CPU E5-2660 v2 processors. Each
of them has 16 cores with clock rate of 2.2GHz. The machine contains two Intel® Xeon-
Phi® 5110p co-processors. The total runtime of move grid was measured on three set-
tings: (1) Host only mode. That is, all the calculations were performed on the host itself.
(2) Offload of about two-thirds of the array to one accelerator. (3) Offload of 5/11 of the
array to each of the two accelerators. Figure 5 shows the measured runtime for each of
the settings. The offload to two coprocessors gained a speedup of about factor two com-
pared to the host-only setting. This results suggests that asynchronous offloading is ben-
eficial. As offload latency of accelerators is getting smaller ans smaller in modern archi-
tectures, asynchronous offload and host-target shared computations may be implemented
on computations to enhance their performance.
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Figure 5. The runtime (in minutes) of subroutine move grid using: (1) only CPUs, (2) CPUs and one Xeon-Phi
accelerator, (3) CPUs and two Xeon-Phi accelerators.

4. Speedup Using Advanced Linear Algebra Solvers

The task of solving linear algebraic systems of equations is one of the fundamental prob-
lems in scientific computing. During the past decades a lot of methods were devised in
order to tie the best solution method to each problem given any hardware architecture.
While initiation of third-party libraries of solvers for this task is usually the preferable
step, it should be taken into account that not all the solvers were created equal. Each
solver may use different methods which may applicable for different type of matrices
[13]. Furthermore, not all the solvers implemented in a way that exploits the features and
characteristics of the underlying hardware. The last fact is even more true when it comes
to heterogeneous hardware and accelerators [14]. Consequently, when we looked for a
way to speedup the hydrology module, the linear solver was the usual suspect.

4.1. Methods to Solve Linear Algebraic Equations

Roughly speaking, all the algorithms to solve linear systems can be divided to two types:
(1) Linear methods, which translate the original system into equivalent more simple sys-
tem, and then solve the equivalent system. (2) Iterative methods, which starts with initial
guess (~x0) for the solution vector ~x. Later, the iterative algorithm calculates the residual
which is the ”distance” between the guess and the correct solution, i.e. |A~x0−A~x|. The
algorithm will try to refine the initial guess until the residual will be lower than a prede-
fined threshold. Each linear algorithm is distinct by the permutations and factorizations
it adopts to achieve the equivalent system. Each iterative algorithm is distinct by the way
it performs the refinements.

In order to achieve the simple equivalent system in linear methods, there are several
techniques to manipulate the original system. These techniques usually evolves all the
vector and matrix cells in the entire system. Therefore, the time complexity of the equiv-
alent system calculation step is usually larger than O(n2) (considering a system with
matrix A of size n× n). The time complexity of the solution step is usually O(n2). One
way to achieve a simple equivalent system is to perform a LU-factorization [15], where
A = LU such that L (respectively U) is a matrix which have non-zero values only on
its lower (respectively upper) triangle. Prior to these work, Hydro-PED used the linear
solver HSL MA87 [16] which uses Cholesky factorization where A = LLT such that L is
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a matrix which have non-zero values only on its lower triangle, and LT is transposed L.
Both LU-factorization and LLT -factorization have time complexity of O(n3).

While the calculation of the equivalent system in linear methods evolves the entire
vector and matrix cells in the system, the calculation of the residual in iterative method
can be done by using only the non-zero cells solely. Consequently, using iterative meth-
ods on sparse matrices (i.e.

∣∣{(i, j)|Ai, j 6= 0}
∣∣ = O(n) ), the time complexity of each it-

eration will be O(n) plus the time complexity of the solution refinement step which is
usually O(n) too. In conclusion, the time complexity of iterative method which is applied
on matrix A of size n×n and which is converged after k iterations will be O(nk).

4.2. Trilinos - Solver for Heterogeneous Systems

Trilinos [2] is a collection of open source libraries which are used as building blocks.
Following a recent work about usage of second-generation Trilinos [17], we used several
libraries which we interfaced with Hydro-PED:

• Techos - Provides wrappers for BLAS and LAPACK, smart pointers and parame-
ter lists [18].

• Kokkos - Implements a programming model in C++ for writing performance
portable applications targeting all major HPC platforms. It supports MPI,
OpenMP, Pthreads and CUDA [19].

• Tpetra - Implements linear algebra objects which are built on Kokkos [20].
• Belos - Implements most of the common iterative solution methods of linear sys-

tems [21].

The combination of these building blocks provides a strong and versatile framework to
solve linear systems. The main additive value of Trilinos is the usage of Kokkos as an en-
capsulated framework which enables the programmer to exploit different types of HPC
architectures and technologies without any major changes in the code. This fundamen-
tal feature makes Trilinos optimal for heterogenous systems which contains traditional
CPUs along with GPGPUs and Xeon-Phis.

We used Belos package to implement the well known iterative algorithm Conjugate-
Gradients (CG) [22] which shows relatively rapid convergence for symmetric matrices
(as the matrix yielded by the diffusion equations of the hydrology module). We may use
the Generalized minimal residual (GMRES) method [23] in the future when we will deal
with asymmetric matrices on the heat module.

4.3. Reuslts

In Hydro-PED’s hydrology model, each timestep yields a new matrix which is slightly
different from the previous matrix. Therefore, we would not be able to exploit the ad-
vantage of one-time factorization in the linear method. Furthermore, for a matrix of size
n×n yielded by Hydro-PED, there will be about 12n non-zero values (due to geograph-
ical and geometrical considerations [1]). Moreover, the differences in the solution vector
~x between each two consecutive steps is relatively small such that the solution of previ-
ous timestep may be used as a good initial guess for the following timestep. As a result
of these consideration, HSL’s linear solver was replaced with the implementation of CG
given by Trilinos’ Belos package.
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Figure 6. Solvers overall runtime with 11e4 nodes
using HSL MA87 and Trilinos.
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Figure 7. Trilinos overall runtime as a function of
iterations amount, on multi-core CPUs and on GPU.

We tested both HSL and Trilinos on a common scenario of a mesh with 110,000
nodes. Both tests ran on 32 cores provided by machine with two sockets of Intel® Xeon®
Gold 6130. Figure 6 shows the overall runtime of each solver (in seconds). The average
number of iterations needed until Trilinos solver converged was 160. Trilinos showed
speedup of almost x8 comparing to HSL MA87.

We investigated the influence of GPU accelerators on the runtime of Trilinos. We
used a relatively big (but still applicable) scenario of a mesh with 8.5 million nodes which
took about 2GB of GPU memory capacity. We ran several simulations with this mesh,
each takes different number of iterations to converge. The simulations ran on a machine
with two sockets of Intel® Xeon® Gold 6130 and one NVIDIA® Tesla® V100 GPGPU.
Figure 7 shows the overall runtime of Trilinos solver using different amount of iterations.
We can learn from the trends of the chart that while the initialization of the solver using
the GPU took about 3 times more than the initialization without accelerator (probably
due to memory offload), the runtime of each iteration on the GPU was 15 times faster
than on the CPUs. Consequently, the usage of GPU started to pay-off starting from 20
iterations.

5. Conclusion

In this paper we show several useful techniques to profile, analyze, and enhance the per-
formance of scientific applications on a shared-memory environment, using geophysical
application as a test-case. Hydro-PED’s code was built in a heterogeneous and modular
fashion which dictated different kinds of treatment. In the mechanics module, the explicit
manner of calculations directed us to profile the runtime and find bottlenecks. In the hy-
drology module, which was based on FEM and linear systems, we used an of-the-shelf
solution. However, choosing this solution should be done carefully, as we demonstrated.

Both on the hydrology module and the mechanics module, the usage of accelera-
tors gained an extra speedup. This speedup was gained either by synchronous or asyn-
chronous offload. These techniques can be implemented in many other places, both in
Hydro-PED and in another applications.

As both the balance between hydrological and mechanical steps, and the amount
of iterations until convergence of Trilinos changes between different scenarios, the total
speedup of our work is expected to be between x5-x12 comparing to the original execu-
tion. Using this speedup, a large-scale simulation which would have taken a year, will
finish on a few weeks.
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