Distributed Backup Placement in WSNs and Planar Graphs

Gal Oren & Leonid Barenboim

Department of Computer Science, Ben-Gurion University of the Negev
Department of Mathematics and Computer Science, The Open University of Israel
Department of Physics, Nuclear Research Center-Negam

Introduction

- The backup-placement problem was introduced by Halldórsson et al. in 2015. This problem turned out to be very challenging in general networks.
- We focus on wireless networks, specifically looking into solutions that are significantly better than polynomial (and even than linear) solutions.
- Scenario example: several nodes in a network have packages whose backups (or the package itself) need to find a placement elsewhere in the network, due to overload in these nodes areas, in order to improve fault-tolerance and data integrity.
- Because of the lack of capacity to store or process the data on the node itself, it is mandatory, when the local memory is full, to find a backup-placement to the data outside of the node. The backup-placement problem is defined as follows:
 - How to place the data only once in a safe and stable node in order to assure with a high degree of certainty the data integrity and minimization of the network load.
 - How to do so without creating an additional data overflow on other areas of the network.

Backup placement in trees

- The procedure receives a tree \(T = (V, E) \) as input:
 - Algorithm 1 is the naïve one, which computes an \(O(k) \)-backup placement of \(T \).
 - Algorithm 2 is based on constant neighborhood, with \(O(1) \) time complexity.

Algorithm 1 Naïve Distributed Tree Backup Placement Algorithm in \(O(1) \)

1: procedure NAIVE-TREE-BP(NODE \(v \in T \), TREE \(T \))
2: if \(v \) is not a leaf then
3: \(v.BP \leftarrow \text{Arbitrary}(c.\text{children}) \).
4: else
5: \(v.BP \leftarrow v.\text{Parent} \).

Algorithm 2 Constant Neighborhood Independence Distributed Tree Backup Placement Algorithm in \(O(1) \)

1: procedure CNI-TREE-BP(NODE \(u \), GRAPH \(G \), SUBGRAPH \(T \))
2: if \(v \) is not a leaf then
3: \(v.BP \leftarrow \text{Arbitrary}(c.\text{children}) \).
4: else if \(c \) the sibling of \(v (ID(u) < ID(v)) \) and \(z \) sibling of \(v (ID(u) < ID(z) < ID(v)) \) then
5: \(v.BP \leftarrow w \).
6: else
7: \(v.BP \leftarrow v.\text{Parent} \).

- After we proved that each vertex of \(G \) is selected by at most \(c \) vertices of \(T \) if \(G \) is a graph with neighborhood independence of at most \(c \), and \(T \) is a subtree of \(G \), we can now prove that in the case of wireless networks the parameter \(c \) is a constant, based on the properties of the UDG in case of a homogeneous network \(c<5 \).
- We can also prove that even in case of a heterogeneous network, i.e. a network in which all nodes radii are different, based on the properties of the bounded disk graph (BDG), parameter \(c \) is small: \(c=11 \log(R\text{max}/R\text{min}) \).

Backup placement in forests

- We devise a procedure for computing \(O(1) \)-backup placement in forest. We assume that each vertex do not knows its parent, nor to which tree in the forest it belongs. The procedure receives a forest \(F = (V, E) \) as input and proceeds as follows.
- An exemplification of the Distributed Tree Discovery are in red and the Forest Backup Placement are in blue.

Algorithm 3 The Distributed Tree Discovery Algorithm

1: procedure D-TREE-DISCOVERY(NODE \(v \), GRAPH \(G \), BEACON \(B \))
2: ASSERT: \(B = (ID_{\text{root}}, ID_{\text{daughter}}, ID_{\text{root}}, \text{root}) \)
3: if \(v.\text{root} > d.\text{root} + 1 \) then
4: ASSERT: The neighbor of \(v \), from which the beacon has been received, holds a shorter path to root.
5: \(v.\text{parent} \leftarrow ID_{\text{max}} \).
6: \(v.d.\text{root} \leftarrow d.\text{root} + 1 \).

Algorithm 4 The Forest Backup Placement Algorithm

1: procedure FOREST-BP(GRAPH \(G = (V, E) \))
2: \(T = \{} \).
3: while \(G(T) \neq \emptyset \) do
4: \(\text{root} \leftarrow \text{random.select}(V) \).
5: \(v \in V \neq \text{transmit beacon B} \).
6: ASSERT: A tree is formed under root because of the Distributed Tree Discovery Algorithm action.
7: \(\text{CNI-TREE-BP}(T, \text{root}) \).
8: \(T = T \cup T_{\text{root}} \).

- We devise a back-up placement algorithm for bipartite graphs \(G = (U, V, E) \), in which the maximum degree of vertices in \(U \) is bounded by a parameter \(a \), and the maximum degree of vertices in \(V \) is unbounded.
- The goal of our algorithm is obtaining a maximum load of \(O(at) \). To this end, each vertex of \(V \) may select an arbitrary neighbor in \(U \). Since each vertex in \(U \) has at most \(a \) neighbors, the maximum load on vertices of \(U \) is going to be at most \(a \) as well.
- We proved that using the Procedure Partition alg’ we reach \(O(\log n) \) time complexity to bipartite and planar graphs for the backup placement problem.

Backup placement in planar graphs

- We devise a back-up placement algorithm for bipartite graphs \(G = (U, V, E) \), in which the maximum degree of vertices in \(U \) is bounded by a parameter \(a \), and the maximum degree of vertices in \(V \) is unbounded.
- The goal of our algorithm is obtaining a maximum load of \(O(at) \). To this end, each vertex of \(V \) may select an arbitrary neighbor in \(U \). Since each vertex in \(U \) has at most \(a \) neighbors, the maximum load on vertices of \(U \) is going to be at most \(a \) as well.
- We proved that using the Procedure Partition alg’ we reach \(O(\log n) \) time complexity to bipartite and planar graphs for the backup placement problem.

Algorithm 5 The Bipartite Graph Distributed Backup Placement Algorithm

1: for each \(v \in V \), \text{a}l\text{low.b}ackups \(\rightarrow \text{Active} \).
2: procedure BIPARTITE-BP(V, \(u, t \))
3: if deg(v) \(\in V < 2at \) & deg(v) \(\neq 0 \) then
4: \text{a}l\text{low.b}ackups \(\rightarrow \text{Passive} \).
5: \(V = V \setminus \{v, v.\text{neighbors} \}

Acknowledgments: This work was supported by the Lynn and William Frankel Center for Computer Science, the Open University of Israel’s Research Fund, and ISF grant 724/15.