
Automatic Parallelization for Shared Memory Scientific Multiprocessing
An Analysis & Comparison
Idan Mosseri[1,3], Re’em Harel[2,4], Harel Levin[1,5], Matan Rusanovsky[2,3], Gal Oren[1,3]

Tool License Supported Language Last Updated

AutoPar (ROSE) Free C, C++ May, 2017

Par4All (PIPS) Free C, Fortran, CUDA, OpenCL May, 2015

Cetus Free C Feb, 2017

SUIF compiler Free C, Fortran 2001

ICC Proprietary C, Fortran, C++ Jan, 2017

Polaris compiler Free Fortran 77 Unknown

S2P Proprietary C Unknown

Introduction
● Parallelization is essential in order to exploit the full benefits of multi-core

architectures, which have become widespread in recent years.

● Designing a valid parallelization for applications is not always a simple task.

● Automatic parallelization tools were proposed to ease this process.

Our Focus
In this study, we overview and compare three of free up-to-date tools that were found to
be most suitable for scientific code parallelization:

Pros
+ Loop size dependent parallelization

+ Handles nested loops.

+ Provides cross-platform interface.

+ Verifies existing OpenMP directives.

+ Modifications are accompanied by clear
explanation and reasoning in its' output.

Cetus
Cons
⁻ Does not support function calls.

⁻ Adds Cetus's pragmas which create excess code.

⁻ May create uncompilable reduction clauses.

Cons
⁻ May require programmer intervention to

handle function side-effects, classes etc. (via
annotation file).

⁻ May add incorrect OpenMP directives when
given the "No-aliasing" option.

AutoPar
Pros
+ suitable for OOP.

+ Handles nested loops.

+ Verifies existing OpenMP directives.

+ Can be directed to add OpenMP directives
regardless of errors.

+ Modifications are accompanied by clear
explanation and reasoning in its' output.

Pros
+ Suitable for GPUs.

+ Automatically analyzes function side effects
and pointer aliasing.

+ Supports many data types.

+ Supports Fortran.

Cons
⁻ Dead code will not be parallelized.

⁻ May change the code structure.

Par4All

Conclusion
AutoPar
● AutoPar’s Annotation file is a powerful tool, especially for function side effect, structures and object

oriented programming, which makes it more suitable for bigger or OOP-based projects.
● AutoPar's No-Aliasing option should be used with caution.

Par4All
● Older, but still a forceful tool that can handle most cases automatically with minimal user intervention.
● Supports Fortran, making it more suitable for scientific legacy codes.

Cetus
● Its ability to take loop size into account makes it a very powerful tool.
● Generates reduction clauses on arrays. However, this reduction clause may be invalid.

[4] Department of Physics, Bar-Ilan University, IL52900, Ramat-Gan, Israel.
[5] Department of Mathematics and Computer Science, The Open University of Israel, P.O.B. 808, Ra'anana, Israel.

[1] Department of Physics, Nuclear Research Center - Negev, P.O.B. 9001, Be'er-Sheva, Israel.
[2] Israel Atomic Energy Commission, P.O.B. 7061, Tel Aviv, Israel.
[3] Department of Computer Science, Ben-Gurion University of the Negev, P.O.B. 653, Be'er Sheva, Israel.

Tool License Supported Language Last Updated

AutoPar (ROSE) Free C, C++ May, 2017

Par4All (PIPS) Free C, Fortran, CUDA, OpenCL May, 2015

Cetus Free C Feb, 2017

SUIF compiler Free C, Fortran 2001

ICC Proprietary C, Fortran, C++ Jan, 2017

Polaris compiler Free Fortran 77 Unknown

S2P Proprietary C Unknown

NAS Parallel Benchmark
To further evaluate the tools capabilities, we introduce the Numerical
Aerodynamics Simulations (NAS) Parallel Benchmarks.

The benchmarks that were included to
evaluate the tools are

● Block Tri-diagonal solver (BT)
● Conjugate Gradient (CG)
● Embarrassingly Parallel (EP)
● Integer Sort (IS)
● Lower-Upper Gauss-Seidel solver (LU)
● Multi-Grid (MG), Scalar
● Penta-diagonal solver (SP)
● Unstructured Adaptive mesh (UA)

The benchmarks Fourier Transform (FT)
and Integer Sort (IS) were excluded from
this study due to the inability of AutoPar
and Par4All to process them.

To show a scenario which involves the
tools' output and minimal human
intervention, the unnecessary OpenMP
directives, created by the three tools were
manually removed.

Tools speedup on compared to serial execution.

Tools Speedup after removing unnecessary directives
compared to serial execution.

Unnecessary directives removal speedup compared the
tools output beforehand.

Comparison
We compare AutoPar, Par4All and Cetus on several variations of the Matrix Multiplication,
with each variant emphasizing a different parallel shared memory management pitfall.

Array Reduction/Privatization: parallel
directive can only be added with array reduction
clause or with an array declared as private?

● AutoPar inserts OpenMP directives to the two
outermost loops.

● Par4All inserts OpenMP directive only to the
outermost loop.

● Cetus inserts OpenMP directives to all three
loops.

Verify Alias Dependence: Does the tool check
for dependencies other then pointer aliasing when
the No-Aliasing option is turned on?

● AutoPar (when given the No-Aliasing option)
ignored all data dependencies and inserted an
incorrect directive to the innermost loop.

● Par4All did not insert any OpenMP directive
(even with the No-Aliasing option).

● Cetus stepped into an internal error

Loop Unroll support: Will the tool insert
OpenMP directives into unrolled loops?

● AutoPar did not insert any OpenMP directives.

● Par4All added an OpenMP directive only to the
outermost loop as in the first test.

● Cetus Added OpenMP directives to all three
loops. However, the innermost loops’ directive
is uncompilable as it contains a reduction
clause for multiple array cells.

Function call support: Will the tool insert
OpenMP directives to loops containing function calls
with/without side effects?

● AutoPar could not parallelize the code without

an Annotation file.

● Par4All Inserts an OpenMP directive to the
outermost loop as before.

● Cetus did not add any OpenMP directives.

Acknowledgments: This work was supported by the Lynn and William Frankel Center for Computer Science. Computational support was provided by the NegevHPC project.

All test-cases were compiled

● Using Intel(R) C Compiler XE 2018.

● Update 5 for Linux*.

● Using internal optimizations (i.e. -O3).
Unless stated otherwise

And executed on

● Machine with two Intel(R) Xeon(R) CPU E5-2683 v4
processors.

● Intel(R) Xeon-Phi co-processor 5100 series (rev 11) in
native mode.

● NVIDIA(R) Tesla(R) P100-PCIE-16GB.

Hardware & Specifications

mat_mul speedup with different number of elements
in log-scale.

mat_mul speedup on Intel Xeon-Phi compared to
serial run (on Intel Xeon) with -O3 and -O0.

mat_mul speedup with different number of elements
in log-scale.

Function execution times.

Runtime Analysis

Modified mat_mul runtime on Intel Xeon Xeon-Phi
and NVIDIA Tesla

Modified mat_mul Speedup on Intel Xeon Xeon-Phi
and NVIDIA Tesla

The code was further modified so that Par4All would transform it to CUDA code.
The graphs below compare the modified code with Par4All on Intel Xeon, Xeon-Phi
and NVIDIA Tesla

Accelerators & Co-processors

