)
N O3,

2)
~ 4
we) >
3 5o

) <

Q/}. \\0
o) 0&&
Uni versity

Introduction: Memory-aware vs.

Memory-oblivious Algorithms

Understanding the memory hierarchy

can be useful in order to enhance the

performance of an algorithm or a data
structure.

Algorithms and data structures that
adjust to a specific memory
organization are known as memory-
aware or memaory-conscious.

Algorithms and data structures that do
not take into consideration memory
parameters and hierarchy are called
memory-oblivious.

Design of memory-aware algorithms
requires awareness of the memory
hierarchy, as the latency and
bandwidth penalty between the
different levels of the memory is
significant.

Memory-Aware Management for Multi-Level Main Memory Complex

using an Optimization of the Aging Paging Algorithm

Gal Oren, Dr. Leonid Barenboim, Dr. Lior Amar
orenw(@post.bgu.ac.1l, leonidb@openu.ac.1l, liororama@gmail.com

Storage

Modern Server
Memory Hierarchy

$ $

The Memory Hierarchy and its Latency and Bandwidth

Suggested Solution:

Memory Allocation Manager (MAM)

A Memory Allocation Manager
(MAM), based on the idea of C
language malloc and STXXL
allocation modules, should be able

to take the power of the memory
management from the virtual

memory mechanism and to deliver it
to the developer.

In this scenario there is no common
‘flat’ view of the main memory, but a
plurality of memories, which the new
MAM, by the instructions from the
application, will take charge of them.

The developer will have the option
to control those memories — serially
or in parallel —in order to achieve
the best performance possible.

Memory-Aware Aging Paging Algorithm

for Multi-Level Main Memory Complex

a)
Central Processing Unit (CPU)

Application

Ptrd /’tr3 \Ptﬂ Ptrl

Memory Allocation Manager (MAM)

V3 V2 V1 V0
S 3 S_2 S 1 S_0
Storage Storage Storage Random
Class Class Class Access
Memory Memory Memory Memory
(SCM) 3 (SCM) 2 (SCM) 1 (RAM)

|

Cache Line Access

The Memory Allocation Manager (MAM) Diagram of Usage

A transition of the memory-oblivious Aging
algorithm to be a memory-aware algorithm
discovered to be the best paging algorithm for
our problem, especially because of the
existence of a linear proportion between the
degradation of the referenced bits and the
amountof time that a specific page has not
been in use.

In this hypothesis, unlike in the other multi-
level main memory complex paging
algorithms adaptations and adjustments of
ours (like NRU, FIFO etc.), thereis an
interestingphenomenon.

Specifically, there is a possibility to create a
direct link between the amountof zeroesin
the beginning of the page referenced bits to
the level of memorythat that page should be
evicted to according to its usage proportion
(L) using a calculation which should take only
few floating-pointoperations,and which is
based on information the operating system
already holds.

o -
n ST

Formulation of the Aging algorithm for multi-level main memory complex:

Set memory levels to N (ML = N).
Set current memory level pointer to the highest (L = 1).

Insertion of a new page:

E OPE
IVERSIT
1S E

A

|-'<z

1.1. Ifthe current memory level pointer is higher than the lowest memory level (L > ML):

1.1.1. Return False. /* Recursion Termination */
1.2. Call to the page.
1.3. Ifthe page exists in the memory / storage:
1.3.1. Check if placing in the L-level of memory is possible.
1.3.2. If placement possible:
1.3.2.1. Place page at the L-level of memory.
1.3.2.2. Return True. /* Recursion Termination */
1.3.3. Else If placement impossible:
1.3.3.1. Find the page with the lowest referenced counter:
1.3.3.1.1. Remove the page with the lowest referenced counter.

1.3.3.1.2. Place the page instead of the removed page.

1.3.3.1.3. Do Insertion of the page with the lowest referenced counter to the proportionate level

of memory based on the amount of the zeroes in the beginning of the page reference

bits. /* Recursion Invocation */

Amount of Initial Zero Bits

1.4. Else If page does not exist in the memory / storage:

1.4.1. Return False. /* Recursion Termination *

Update of an existing page (by the OS):
1.1. IfRead/ Write action performed on the page:
1.1.1. SetRbitto1 (R=1).
1.2. If clock interrupt:
1.2.1. Right Shift one bit to all of the pages counters.
1.2.2. Add the R bit to the leftmost bit of all of the pages counters

[Amount of Reference Bits

ML l

Previous Work: The Parallel Disk Model

(PDM) & The STXXL Library

Several simple models have been introduced
for designing |/O-efficient algorithms and data
structures.

The most realistic model is the Parallel Disk
Model (PDM) of Vitter and Shriver. In this
model, |/Os are handled explicitly by the
application.

The most common implementation of the
PDM modelcan be found at the STXXL
project. The core of STXXL is an
implementation of the C++ standardtemplate
library STL for external memory (out-of-core)
computations,i.e., STXXL implements
containers and algorithms that can process
huge volumes of data that only fit on disks.

The performance features of STXXL include
transparentsupportof multiple disks, variable
block length, overlappingof I/O and
computation,and prevention of OS file
bufferingoverhead.

\

| |
TR

D
|

Serial Disk Model (SDM) vs. Parallel Disk Model (PDM)

The Elephantin the room:

A Re-Write of All Codes?

Although an explicit usage of the MAM
seems to be the best approach for multi-
level main memory complex
management, this techniqueis still very
far from being realistic, and the chances
that it would be implementedin current
codes using High Performance Computing
(HPC) platforms — the primary target
group which need this massive
enlargement of the main memory —is
quite low.

The reason for this problemis that the
MAM require not only to re-modify the
memory platform and the access to it, but
obviously also to re-write the memory-
obliviouscodes that is currently based on
transparent memory access; a re-write
that in many important codes is very
complicated.

Analysis of the Aging Paging Algorithm -

Benchmarking Methods

YEAH IFYOU COULD JUST REWRITEALL

THAT CODE ASAP

P

Bl
—

3 ‘ ‘ie N ! » > ~ Y)
§ . - v & v_ { X . ‘ ‘.‘
- 4 -:.\ v » ' : \ {| .\I ‘ ~.
Jn 2
)
- — _ . ’ A AN
.C-;S . .‘ | “_‘—}
| | J ,
: - 54 N |

memegenerator.net

In order to verify our hypothesis, especially when the
memory complex is a complex of standard RAM and
different types of Storage Class Memory (SCM), we
need to verify two main hypotheses:

First, that the memory-aware algorithm is resulting in
an equally efficient Hit / Miss ratio as the memory-
oblivious Aging algorithm when it implemented on
multi-level main memory complex using the explicit
cache mechanism.

Second, that the memory-aware algorithm is resulting
in a significantly better access speed than the
memory-oblivious Aging algorithm when it is
implemented on multi-level main memory complex
using the explicit cache mechanism. This parameter
should show that the new algorithm actually
manages to transfer the different pages to their
designated memory levels in the memory, and that
this redirection of pages actually manages to move
the more needed pages to a better access-time levels
in the memory complex, and by that to achieve better
total performances.

Therefore, we tested and compared the two types of
algorithms —the memory-aware Aging and the
memory-oblivious Aging —on different platforms.

Hit / Miss Ratio

Hit / Miss Ratio

/ Miss Ratio

Hit

0.3 \/‘N\L 0.4
0.225 03 * o ®
- Platform 1 - Memory-Oblivious Aging o
015 + € Platform 2 - Memory-Aware Aging & 02 | - Platform 1 - Memory-Oblivious Aging
0 = @ Platform 2 - Memory-Aware Aging
i
0.075 | 0.1 ¢ —& —@ —0
0 : : : : : : . : 0 . :
10 20 30 40 50 60 70 80 90 100 1000 10000 100000 1000000
Amount of Page References (Ffl() 17100) Amount of Page References (F,]U I,]UU)
0.3 0.35
0.225 034 t
L
3
0
0.15 Z 033t
/ ® Platform 3 - Memory-Aware Aging
Platform 3 - Memory-Aware Aging é
0.075 032 T
0 0.31 . i
1000 10000 100000 1000000
Amount of Page References (F=1110; I=220)
1.000 0.3 \/‘N
0.750 0.225 r q
8
=]
3
0.500 Z 015
i
T
= - = -
0250 - Platform 2 - Memory-Oblivious Aging 0.075 “®- Platform 1 - Memory-Oblivious Aging
¢ Platform 2 - Memory-Aware Aging 4 Platform 2 - 1\I('m()r:\'—A\\'ar(* Aging
F Platform 2 - Memory-Aware Aging - Modified
0.000 . : . . . * * * 0 : : :
10 20 30 40 50 60 70 80 90 100 10 20 30 40 50 60 70 80 90 100

Amount of Unique Page Indexes (F=10; R=1000)

Amount of Page References (F=10; I=100)

Future Memory:

Storage Class Memory (SCM)

Storage Class Memory (SCM) proposes to
minimize or even close the wideninggap
between CPU processing speeds, the need to
rapidly transfer big data blocks, and the read-
write speeds suggested by HDD reliant
systems.

The SCM is a technology which represents a
new hybrid form of storage and memory with
unique characteristics, meaninga memory
which is non-volatile,cheap in a per bit cost,
has fastaccess times for both read and writes
using cache line access, and is solid state.

Also, the SCM is supposed to have different
versions with differentaccess speeds and
differentvolumes, meaningthat it may be
possibleto add different SCM devices to the
memory hierarchy as an extension of the
RAM, and manage this enlarged main
memory complex using special algorithms, as
the PDM model manages the disk complex
using STXXL library.

Price
$/GB
NOR
SCM PCle
/ SSD
‘ r * SSD segmenting into
G, ol SATA + PCle SSD Cache
HHE SSD - as backend to DRAM &
......... . SATA SSD
- as front end to HDD
Performance
I/O Access Latency
Processor Memory Persistent Storage
1980 | CPU —m_
FLASH
2016+ | CPU]

The SCM in Context of the Available Memories

The Solution:

Paging Algorithms as a Practical Resort

Introducing the MAM concepts and the
multiple main memory levels awareness
into the classic paging algorithms can be
a good solution, which will not be a big
performance compromise, buta modest
one.

Thus, creating a simulator that will be
able to run on any computer or sever,
and that will be able to simulate a
situation in which frames of memory are
managed and mapped to specific levels
of memoryin a memory-aware fashion,
is beneficial for the development of this
technology.

To this end, we built the DeMemory
simulator framework for testing of
memory-aware and memory-oblivious
paging algorithm as well as for other

algorithms that will be builtin the future.

Analysis of the Aging Paging Algorithm -

Results and Conclusions

AGING_N Algorithm
LEVEL: [0] - Frames in Mem: 10, Refs to Mem: 100, Hits: @, Misses: 4, Hit Ratio: 0.000000, [Max Page calls: 5]

Frame # : 0 1 2 3 4 5 6 7 8 9
Page Ref : 7 73 72 23 _ _ _ _ _ _
Extra 3 1250000 2500000 5000000 0 0 0 0 0 0 0
Time i 48296258 48296258 48296258 48296258 48296258 48296258 48296258 48296258 48296258 48296258
Frame # : 0 1 2 3 4 5 6 7 8 9
Page Ref : _ _ _ _ _ _ _ _ _ _
Extra : 0 0 0 0 0 0 0 0 0 0
Time : 48296258 48296258 48296258 48296258 48296258 48296258 48296258 48296258 48296258 48296258
Frame # : 0 1 2 3 4 5 6 7 8 9
Page Ref : _ _ _ _ _ _ _ _ _ _
Extra : 0 0 0 0 0 0 0 0 0 0

Time : 48296258 48296258 48296258 48296258 48296258 48296258 48296258 48296258 48296258 48296258
>>>>>>>>>>>>>>> Current Level: [0]

framep->index: [0], framep->extra:[625000], count_zeros_before: [4]
skxkx calculate_direct_level skkkxkx: 1

sxkkk [00001000] xxkxx

INDEX: [0]

INDEXES [0]:[0]

skkx REMOVED : [1]xkokx

INSERT-IN ::: framep->index:[@], framep->page:[7]

INSERT ::: framep->index:[@], framep->page:[7]

skkk INSERT @ [1]skkxk

framep->index: [1], framep->extra: [1250000], count_zeros_before: [3]
framep->index: [2], framep->extra: [2500000], count_zeros_before: [2]
framep->index: [3], framep->extra:[5000000], count_zeros_before: [1]
>>>>>>>>>>>>>>> Current Level: [1]

framep->index: [0], framep->extra:[625000], count_zeros_before: [5]
>>>>>>>>>>>>>>> Current Level: [2]

AGING_N Algorithm
LEVEL: [@] - Frames in Mem: 10, Refs to Mem: 100, Hits: @, Misses: 5, Hit Ratio: 0.000000, [Max Page calls: 5]

Frame # : 0 1 2 3 4 5 6 7 8 9
Page Ref : _ 73 72 23 65 _ _ _ _ _
Extra 0 1250000 2500000 5000000 0 0 0 0 0 0
Time 0 48296258 48296258 48296258 48296258 48296258 48296258 48296258 48296258 48296258
Frame # : 0 1 2 3 4 5 6 7 8 9
Page Ref : 7 _ _ _ _ _ _ _ _ _
Extra : 625000 0 0 0 0 0 0 0 0 0
Time 1 48296258 48296258 48296258 48296258 48296258 48296258 48296258 48296258 48296258 48296258
Frame # : 0 1 2 3 4 5 6 7 8 9
Page Ref : _ _ _ _ _ _ _ _ _ _
Extra : 0 0 0 0 0 0 0 0 0 0

Time : 48296258 48296258 48296258 48296258 48296258 48296258 48296258 48296258 48296258 48296258
AGING_N Algorithm

LEVEL: [@] - Frames in Mem: 10, Refs to Mem: 100, Hits: @, Misses: 5, Hit Ratio: 0.000000, [Max Page calls: 5]
Elapsed: 0.000706 seconds

Analysis of the DeMemory Workflow

We discovered that the Hit / Miss ratio as function
of the amount of unique page indexes and the
amount of page references was almost the same,
meaningthat despite the fact that the memory-
aware Aging algorithm is transferring data to other
levels even before the memory level is full, thereis
no negative impact.

Furthermore, and mostimportantly, we examined
the access speed to the memory complex as
function of the amount of page references and
discovered that the memory-aware Aging
algorithm is yielding about 75% improvement in
the access speed over the memory-oblivious
Aging algorithm, as evident from the lower
average access levelsin comparisonto the
memory-oblivious algorithm (Recall that the
memory levels are ordered accordingto their
speed, and lower levels are faster).

This means that although the Hit / Miss ratio in
both algorithmsis almost the same in most cases,
there is a clear advantage to the memory-aware
Aging algorithm, as it resultingin much better
performances than the memory-oblivious Aging
algorithm using multi-level main memory complex.

0.4

0.3

/ Miss Ratio

Hit

= Platform 2 - Memory-Oblivious Aging
@ Platform 2 - Memory-Aware Aging

0.1 } /

0 & : : . . :
10 20 30 40 50 60 70 80 90 100
Amount of Page References (F=10; I=100)
3
< 225
> o- —0- —® ® ®
—
5 1.5
= ’ —- —4 *
0 (75
;f 0.75 ® Platform 2 - Memory-Oblivious Aging
;.é 4 Platform 2 - Memory-Aware Aging

0

100 1000 10000 100000

Amount of Page References (F=10; I=100)

1000000

